PRINCE OF SONGKLA UNIVERSITY
 FACULTY OF ENGINEERING
 Department of Computer Engineering

Midterm Examination: Semester 1
Date: 28th July 2002
Subject Number: 240-311

Academic Year: 2002-2003
Time: 9.00-11.00 (2 hours)
Room: R300

Subject Title: Mathematics for Computer Engineering
Lecturer: Aj. Andrew Davison

Exam Duration: 2 hours
This paper has 3 pages.

Authorized Materials:

- Writing instruments (e.g. pens, pencils).
- Books (e.g. dictionaries) and calculators are not permitted.

Instructions to Students:

- Answer questions in English. Perfect English is not required.
- Attempt all questions.
- Write your answers in an answer book.
- Start your answer to each question on a new page
- Clearly number your answers.
- Any unreadable parts will be considered wrong.
- When writing programs, use good layout, and short comments; marks will not be deducted for minor syntax errors.
- The marks for each part of a question are given in brackets (...).

1. Use induction to show that each equation is true:
a) $\frac{1}{1 * 2}+\frac{1}{2 * 3}+\ldots+\frac{1}{(n-1) n}=1-\frac{1}{n} \quad$, when $n \geq 2$
b) $\quad(\cos x+i \sin x)^{\mathrm{n}}=(\cos n x+\mathrm{i} \sin n x)$, when $\quad n \geq 1$

Hint: use the following equalities:

$$
\begin{align*}
& \cos (a+b)=\cos a \cos b-\sin a \sin b \tag{14}\\
& \sin (a+b)=\sin a \cos b+\cos a \sin b
\end{align*}
$$

(25 minutes; 25 marks)
2. Consider the following C function:

```
void foobar(int a, int d)
{
    int r = a;
    int q = 0;
    while (r >= d) {
        r = r-d;
        q = q+1;
    }
    printf("q=%d; r=%d\n", q, r);
}
```

The loop invariant $S(k)$ is $d^{*} q_{k}+r_{k}=a$, where $q_{k}=k$ and $r_{k}=a-d^{*} k$ are the values of q and r after k iterations of the loop. a and d are both positive integers.
a) Prove that the loop invariant is correct, by induction on k. (5)
b) Give some examples of the output produced when foobar is called with different arguments. (2)
c) Say in words what foobar does. (3)
(10 minutes 10 marks)
3. Consider the sequence $\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots\right\}$ defined by:

$$
\begin{array}{lcc}
a_{0}=1 & a_{1}=3 & a_{2}=5 \\
a_{n}=a_{n-1} *\left(a_{n-2} * a_{n-2}\right) *\left(a_{n-3} * a_{n-3} * a_{n-3}\right)
\end{array}
$$

a) Write a recursive C function which returns the $\mathrm{n}^{\text {th }}$ value in the sequence. (10)
b) Write an iterative C function which returns the $\mathrm{n}^{\text {th }}$ value in the sequence. (15)
c) Compare the functions of part (a) and (b), and say in words which is more efficient. Explain your decision. Hint: efficiency in this case means the amount of memory used to store data. (10)
(35 minutes; 35 marks)

Question 4 on next page.
4. a) Work out the worst case big-oh running time for the following recursive function. Show all your working. (25)

```
void sort(int A[], int n)
{ int imin, i;
        if (n > 1) {
            imin = 0;
        for (i=1; i < n; i++)
            if (A[i] < A[imin]) imin = i;
        swap(A, n-1, imin);
        sort(A, n-1);
    }
}
```

Note: you do not have to implement swap (). Assume that swap () has a constant running time.
b) Rewrite sort () to use loops instead of recursion. The new version should use the same input arguments as in part (a). Do not implement swap (). (15)
c) Work out the worst case big-oh running time for the iterative version of sort () from part (b). Show all your working. (5)
d) Compare the big-oh values for parts (a) and (c). Explain in words what the comparison means. (5)
(50 minutes; 50 marks)
--- End of Examination ---

