PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester II (#2)

Date: 12 February 2003

Subject: 230-630 Advanced Transport Phenomena I

Academic Year: 2002

Time: 13.00-16.00

Room: ChE

- ข้อสอบมี 6 ข้อ ต้องทำทุกข้อ คะแนนเต็ม 80 คะแนน
- ควรใช้เวลาทำข้อสอบโดยเฉลี่ย 2 นาที/คะแนน
- อนุญาตให้นำหนังสือ เอกสาร เครื่องคำนวณ และอุปกรณ์อื่น ๆ เข้าห้องสอบได้

สุธรรม สุขมณี ผู้ออกข้อสอบ 10 มกราคม 2546

- 1) The thermal conductivity of acetylene (C_2H_2) is measured as 0.022 W/m $^{\circ}$ C at 1 atm and 25 $^{\circ}$ C. Estimate the thermal conductivity at 123.2 atm and 191 $^{\circ}$ C. (10 points)
- 2) Derive an expression for the steady temperature distribution (T), heat transfer rate (Q) and average temperature (< T>) in the hollow solid sphere with a constant thermal conductivity of k, an inside radius of λR and an outside radius of R. The inside temperature of the sphere is T_{λ} and the ouside temperature is T_{R} .

The average temperature in the sphere is defined as:

$$\langle T \rangle - T_R = \frac{\int\limits_{\lambda R}^{R} (T - T_R) dr}{\int\limits_{\lambda R}^{R} dr} = \frac{\int\limits_{\lambda R}^{R} (T - T_R) dr}{R(1 - \lambda)}$$

- 3) A very large block of steel with a thermal diffusivity (α) of 1.45×10^{-5} m²/s is initially at a uniform temperature of 30 °C. The surface temperature is suddenly raised to 250 °C. Calculate the temperature in the block at the depth of 25 mm after an exposure time of 30 seconds.(10 points)
- 4) Air with an uniform temperature of 30 °C and a pressure of 1.46 atm. ($\rho = 1.7 \text{ kg/m}^3$, $\mu = 0.01822 \text{ mPa.s}$, $C_p = 1.022 \text{ kJ/kg}$ –°C and k = 0.0266 W/m–°C) is flowing in a smooth circular pipe of diameter 54.1 mm with a mass flow rate of 69.7 kg/h (Reynolds number of about 25000 and the wall shear stress (τ_o) for the flowing air stream may be taken as 0.13 N/m²). Beginning at z = 0 to z = 2000 mm, there is a heating device that transfer heat to the tube at constant wall heat flux (q_o) of -800 W/m^2 . At the distance of 2000 mm from the start of this section, the pipe wall temperature (T_o) is 120 °C and the time-smoothed air temperature (T_o) at the pipe center-line is 87.5 °C. Find the time-smoothed air temperature (T_o) at a distance of 13.525 mm from the pipe wall.
- 5) Air at 40 °C and 1 atm flows over a flat plate at a velocity of 2 m/s. Calculate the heat flux from the plate at distance of 0.2 and 0.4 m from the leading edge of the plate if the plate is heated over it entire length to a temperature of 60 °C. (10 points)

Physico-chemical properties of air at 1 atmosphere:

T (°C)	$\rho (\mathrm{kg/m^3})$	μ (μPa.s)	$C_p (kJ/kg^{-0}C)$	$k (W/m-^{\circ}C)$
40	1.1274	18.588	1.009	0.027
50	1.0925	18.974	1.000	0.028
60	1.0597	19.376	0.994	0.029

6) A 20 mm diameter of horizontal heater is maintained at a surface temperature of 60 °C and submerged in water at 40 °C. Calculater the free convection heat loss per unit length of the heater. (10 points)

Physico-chemical properties of water at 1 atmosphere:

T (°C)	$\rho (\text{kg/m}^3)$	μ (mPa.s)	$C_p (kJ/kg^{-0}C)$	$k (W/m-^{\circ}C)$
40	991.5	0.66	4.187	0.637
50	986.5	0.55	4.194	0.649
60	981.6	0.47	4.201	0.660