คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 2

ประจำปีการศึกษา 2545

วันที่ 3 มกราคม พ.ศ. 2546 9.00 น. (สอบนอกตารางสอบ)

วิชา 215-681: การวิเคราะห์กลไกโดยวิธีเมตริกซ์ (Matrix Methods in Analysis of Mechanisms)

คำสั่ง

- 1. ข้อสอบมีทั้งหมด 3 ข้อ ให้เวลาทำ 4 วัน ส่งวันที่ 7 มกราคม พ.ศ. 2546 เวลา 16.00 น.
- 2. ให้ทำทุกข้อโดยควรใช้คอมพิวเตอร์ช่วยในการคำนวณ แต่จะต้องมีคำอธิบายวิธีการ

ดร.วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ 1. The kinematic diagram of a mechanism is shown in figure 1 along with the incidence table. Determine the incidence matrix, loop matrix, and path matrix of this mechanism.

Figure 1

Joint	From link	To link
А	12	1
В	1	2
С	2	3
D	3	4
E	4	5
F	5	12
G	4	6
Н	6	12
I	4	7
J	7	8
K	8	9
L	9	10
M	10	12
N	8	11
0	11	12

2. Figure 2 shows a parallel-pulley-and-belt joint with pulley radii r_1 and r_2 , and center disctance c. The coordinate systems uvw and xyz attached to the links before and after the joint, respectively, are shown as initial configuration. If the joint variable φ is the rotation of the first pulley, determine the join transformation matrix Φ , and derivative operator matrices, \mathbf{Q} and $\mathbf{Q'}$, of this joint.

Figure 2

3. A slider-crank mechanism is shown in Figure 3 with its initial position $\Phi_A = 60^\circ$, $\Phi_B = 240^\circ$, $\Phi_C = 60^\circ$, and $\Phi_D = -2$ m. Show, by matrix methods, the calculation of the joint variables when Φ_A is moved to be at 45°. At that position if the velocity of joint A is 10°/s, determine the velocity of the other joints. Also, compute the velocity vector of point P on link 2 at that moment.

Figure 3