PRINCE OF SONGKLA UNIVERSITY
 FACULTY OF ENGINEERING
 Department of Computer Engineering

Midterm Examination: Semester 1
Date: 27th July 2003
Subject Number: 240-311

Academic Year: 2003-2004
Time: 9.00-11.00 (2 hours)
Room: R 200

Subject Title: Mathematics for Computer Engineering
Lecturer: Aj. Andrew Davison

Exam Duration: 2 hours
This paper has 3 pages.

Authorized Materials:

- Writing instruments (e.g. pens, pencils).
- Books (e.g. dictionaries) and calculators are not permitted.

Instructions to Students:

- Answer questions in English. Perfect English is not required.
- Attempt all questions.
- Write your answers in an answer book.
- Start your answer to each question on a new page
- Clearly number your answers.
- Any unreadable parts will be considered wrong.
- When writing programs, use good layout, and short comments; marks will not be deducted for minor syntax errors.
- The marks for each part of a question are given in brackets (...).

1. Use induction to show that each equation is true:
a) $\mathrm{n}!>=2^{\mathrm{n}}$, when $\mathrm{n}>=4$
b) $1+4+7+\ldots+(3 n-2)=n(3 n-1) / 2$, when $n>=1$
(25 minutes; 25 marks
2. Consider the following C fragment:
```
scanf("%d", &n);
sum = 0;
for (i = 1; i <= n; i++)
    sum = sum + i;
```

The loop invariant $S(k)$ is $\operatorname{sum}_{k}=i_{k}\left(i_{k}-1\right) / 2$, where sum_{k} and i_{k} are the values of sum and i after k iterations of the loop. Assume that n is a positive integer.
a) Prove that the loop invariant is correct, by induction on k. (10)
b) What is the value of sum after the loop terminates? Explain your answer. (5) (15 minutes; 15 marks)
3) a) Write a recursive C function smallestElem () that takes only a LIST argument as input, and returns the smallest element in the list. Assume that the list contains only positive integers with values less than 2000. If the list is empty, the function returns 2000. (15)
b) Write an iterative C function (i.e. one using loops) which does the same task as in (a). Do not use recursion. (15)
c) Compare the functions of part (a) and (b), and say in words which is more space efficient. Explain your decision. Hint: efficiency in this case means the amount of memory used to store data. (5)
4. a) Work out the worst case big-oh running time for the following recursive function. Show all your working. (15)

```
void insertionSort(int s[], int n)
{
    if (n == 1)
        return;
    insertionSort(s, n-1); // sort first n-1 elems
    // now insert s[n-1] into the correct position in s[]
    int temp = s[n-1];
    int i = n-1;
    while ((i > 0) && (s[i-1] > temp)) {
        s[i] = s[i-1];
        i--;
    }
    s[i] = temp;
}
```

b) Rewrite insertionsort () to use iteration (loops) instead of recursion. Do not use recursion. The new version should use the same input arguments as in part (a). (15)
c) Work out the worst case big-oh running time for the iterative version of insertionsort () from part (b). Show all your working. (10)
d) Compare the big-oh values for parts (a) and (c). Explain in words what the comparison means. (5)
(45 minutes; 45 marks)
--- End of Examination ---

