PRINCE OF SONGKLA UNIVERSITY
 FACULTYOF ENGINEERING

Examination : Final - Session 1	Year : 2003
Date : 2 October 2003	Time : 9.00-12.00
Subject : 240-205 Digital Systems and Logic Design	Room :

NOTE

- There are 7 questions 13 pages. Answer all questions
- All questions are of different values.
- Calculator, textbooks and hand-out are prohibited.
- Every answer must be clear and show how to get the answer.
- All answers must be given in ink.
- Unless otherwise indicated, pencils should only be used for graphical work.

Student ID : \qquad Name : \qquad Section : \qquad

Question	Points	
1	8	
2	5	
3	12	
4	10	
5	10	
6	5	
7	20	
Total	$\mathbf{7 0}$	

Student ID :
Name:

1. Determine the state of each flip-flop waveform of figure 1 (a) after each clock pulse. The Data, clock and SHIFT/LOAD waveforms are given in figure 1 (b). Assume that the flip-flops are initially RESET.
(8 points)
(a) Logic diagram

(b)

Figure 1

Answer

Q_{0}
Q_{1}
Q_{2}
Q_{3}

Student ID :
2. Determine the frequency at output X and Q_{D} in figure 2 when input clock is 8.64 kpps .
(5 points)

Figure 2
Answer
\longrightarrow
-
\qquad
\qquad
\qquad
\qquad
\qquad

Student ID :
Name:
3. Figure 3 shows how a decoder can be used in the generation of control signals. Assume that a RESET pulse has occurred at time t_{0}, determine the $A_{3}, A_{2}, A_{1}, E_{3}, \bar{E}_{2}$ and CONTROL waveforms for 24 clock pulses. (12 points)

RESET

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Student ID :

Name:
4
4. Show how two 74LS293s can be connected to divide an input frequency by 20 while producing a symmetrical square-wave output. (10 points)

Answer

Student ID : Name:
5. Design the Full Adder by using NAND gates. (10 points) Answer

Student ID : Name:
6. Design 16-input multiplexer by using 74LS151.(Give more detail how to design)
(5 points)

Answer

Student ID :
Name:
7. (a) Design a synchronous MOD-6 UP/ $\overline{D O W N}$ counter by using MC14013B (See appendix). The counter should count up when an $U P / \overline{D O W N}$ control input is 1 and count down when the control input is 0.
(10 points)
Answer

Student ID :
Name:

Student ID :
Name:
(b) Draw a logic diagram of the problem 7 (a) (10 points)

Appendix

(a)

Inputs				Outputs	
$\overline{\mathrm{E}}$	S_{2}	S_{1}	S_{0}	\bar{Z}	Z
H	X	X	X	H	L
L	L	L	L	\bar{I}_{0}	I_{0}
L	L	L	H	\underline{I}_{1}	I_{1}
L	L	H	L	I_{2}	I_{2}
L	L	H	H	I_{3}	I_{3}
L	H	L	L	I_{4}	I_{4}
L	H	L	H	I_{5}	I_{5}
L	H	H	L	\underline{I}_{6}	I_{6}
L	H	H	H	T_{7}	I_{7}

(c)
(b)

74LS151

74LS293

MC14013B Dual Type D Flip-FLop

Block Diagram

Truth Table

Inputs				Outputs	
clock †	data	reset	set	Q	$\overline{\mathrm{Q}}$
	0	0	0	0	1
	1	0	0	1	0
	X	0	0	Q	$\overline{\mathrm{Q}}$
	no change				
X	X	1	0	0	1
X	X	$\mathbf{0}$	1	1	$\mathbf{0}$
X	X	1	1	1	1

X = Don't Care
\dagger = Level Change

Student ID :
Name:
74138

