PRINCE OF SONGKLA UNIVERSITY
 FACULTY OF ENIGNEERING

Final Examination: Semester I
Academic Year: 2003
Date: 6 October 2003
Subject: 240-571, 240-572, 240-576
Time: 9:00-12:00
Room:
Principles of Pattern Recognition

Instructions:

This exam has 3 problems, 9 pages and 50 points. Please show all your work. If your answer is incorrect, this will maximize your partial credit for a problem. If your answer is correct, this is required for full credit. You may use the back of the pages for scratch work. This exam is closed book and closed notes. You are allowed to bring a calculator and one A4 sheet of notes (two sides) into the exam room.

Problem	Points	Score
1	20	-
2	20	-
3	10	-

Name: \qquad
Student ID: \qquad

Problem 1

Given two 3-state hidden Markov models each one is defined by a transitional probability matrix and a symbol emission probability matrix as shown below:

HMM 1:

$$
\begin{aligned}
& A 1=\left[\begin{array}{ccc}
0.5 & 0.5 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0 & 1
\end{array}\right] \\
& A 2=\left[\begin{array}{ccc}
0.6 & 0.4 & 0 \\
0 & 0.4 & 0.6 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
B 1=\left[\begin{array}{lllll}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.1 & 0.3 & 0.4 & 0.1 & 0.1 \\
0.6 & 0.1 & 01 . & 01 . & 0.1
\end{array}\right]
$$

HMM 2 :

$$
B 2=\left[\begin{array}{lllll}
0.2 & 0.2 & 0.3 & 0.1 & 0.2 \\
0.2 & 0.2 & 0.4 & 0.1 & 0.1 \\
0.5 & 0.1 & 01 . & 01 . & 0.2
\end{array}\right]
$$

Let the set of possible emitting symbols $\left(\mathrm{V}_{\mathrm{k}}\right)$ be $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
Ignore the entry and exit states and assume that state 1 is the first state and state 3 is the last state. Answer the following questions:
a) Sketch the two HMM's and label each link with the appropriate probability.
b) Determine, using Trellis diagram, the most likely model that generates the following symbol sequence:

$$
V_{k}=\{b b b c c a\}
$$

c) From the most likely model obtained in part (b), determine the most likely state sequence.

Problem 2

A single neuron has two inputs and a bias term as shown:

This problem deals with the algorithm for adjusting the 3 weights to minimize the error measure

$$
J=(t-z)^{4}
$$

Assume the neurons are unipolar sigmoid, i.e. $\quad f(n e t)=\frac{1}{1+e^{-n e t}}$
a) Determine specific equations for the gradient of J, using all 3 weights. That is, determine

$$
\frac{\partial J}{\partial W_{1}}, \quad \frac{\partial J}{\partial W_{2}}, \quad \text { and } \frac{\partial J}{\partial W_{3}}
$$

b) Numerically evaluate the equations from part a if $x_{1}=1, x_{2}=0, W_{1}=W_{2}=W_{3}=t=1$.
c) Determine the next updated values of the weights, using a gradient search technique, and a learning rate of 1 .
d) Compute and compare errors before and after the weight adjustment.

Problem 3

Given a set of 2D patterns

Pattern 1	$(1,2)$
Pattern 2	$(2,3)$
Pattern 3	$(2,2)$
Pattern 4	$(5,1)$
Pattern 5	$(4,2)$

a) Use the k-mean clustering technique to cluster the patterns into two categories. Show the cluster's center of each category
b) Pattern $(3,3)$ should belong to which class?

