4	ν.	
ฎ	ครหส.	

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1

ประจำปีการศึกษา 2546

วันที่ : 29 กันยายน 2546

เวลา : 9:00 - 12:00

วิชา : Advance Chemical Engineering Thermodynamics I (230-610)

ห้อง : R300

- อนุญาตให้นำหนังสือและเอกสารอื่นๆ เข้าห้องสอบได้
- อนุญาตให้นำเครื่องคิดเลขทุกรุ่นเข้าห้องสอบได้
- ข้อสอบมีทั้งหมด 5 ข้อ (8 หน้า) ให้ทำทุกข้อ
- กระดาษไม่พอให้ทำต่อด้านหลัง
- ใช้ดินสอทำข้อสอบได้

หน้าที่	ข้อที่	คะแนนเต็ม	คะแนนที่ได้
2	1	15	
4	2	15	
5	3	15	
6	4	15	
7	5	30	
	คะแนนรวม	90	

ผกามาศ ประยืนยง
 กันยายน 2546

รหัส														
0 1101.		٠.	•	 •	٠.	 	 	 •	٠		•	٠	•	٠

1. For the following systems, finish all calculations.

(15 points)

1.1 A single-effect evaporator concentrates a 25% (by weight) aqueous solution of H_2SO_4 to 75%. The feed rate is 100 lb/s, and the feed temperature is $32^{\circ}F$. The evaporator operates at an absolute pressure of 1 psia, and under these conditions the boiling point of a 75% solution of H_2SO_4 is $200^{\circ}F$. What is the heat-transfer rate in the evaporator? (10 points)

Note: Enthalpy of superheated steam at 200°F and 1 psia = 1150.2 Btu/lb.

ℴ.															
รหส															
d VI61										٠	٠		٠		i

- 1.2 A 25% aqueous solution of H_2SO_4 at $32^{\circ}F$ is mixed with a 75% aqueous solution of H_2SO_4 at $100^{\circ}F$ to form a solution containing 65% H_2SO_4 .
- (a) If the mixing is done adiabatically, what is the final temperature of the solution?
- (b) If the final temperature is brought to 80° F, how much heat must be removed during the process?

(5 points)

•															
വര്മ															
รหส.															

2. For the system ethyl ethanoate (1)/n-heptane (2) at 343.15 K,

$$ln \gamma_1 = 0.95 x_2^2 \qquad ln \gamma_2 = 0.95 x_1^2$$
 $P_1^{sat} = 79.80 \text{ kPa} \qquad P_2^{sat} = 40.50 \text{ kPa}$

Assuming the validity of modified Raoult's law.

- (a) Make a BUBL P calculation for T = 343.15 K, $x_1 = 0.05$
- (b) What is the azeotrope composition and pressure at 343.15 K? (15 points)

รหัส																						
9 MIGN.	٠.	٠		٠	٠	٠	٠	٠	٠	٠			•	•	٠	٠	٠	٠	٠	٠	٠	

3. For a mixture of 48 mol-% ethane (1), 25 mol-% propane (2), and 27 mol-% isobutane (3) at 60°F, determine the dewpoint pressure. Assuming the validity of the De Priester charts. (15 points)

ω,													
รหส		 											

4. Estimate V and ϕ for a mixture of 0.4 mol of methyl ethyl ketone (1) and 0.6 mol of toluene (2) at 60° C and 20 kPa by the Redlich/Kwong equation. (15 points)

รหัส																						
9 MIGN.	٠.	٠		٠	٠	٠	٠	٠	٠	٠			•	•	٠	٠	٠	٠	٠	٠	٠	

- 5. Acetylene is catalytically hydrogenated to ethylene at 1155°C and 35 bars for an initial acetylene-to-hydrogen ratio of 2.
- (a) What is the composition of the product stream at equilibrium?
- (b) Would it better to carry out the reaction at pressure less than 35 bars?
- (c) Would it better to carry out the reaction at temperature less than 1155°C?

(30 points)

~														
รหส														