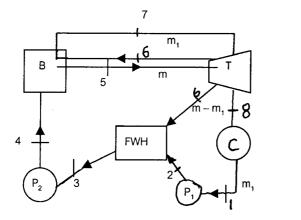
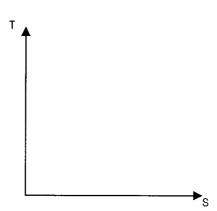
## มหาวิทยาลัยสงขลานครินทร์

## คณะวิศวกรรมศาสตร์

| Name                                | <i>No</i>            |
|-------------------------------------|----------------------|
| วิชา 216-331 Thermodynamics II      | ห้อง R 300           |
| วันที่ 8 ตุลาคม 2546                | เวลา 13.30-16.30 น.  |
| การสอบปลายภาค ประจำภาคการศึกษาที่ 1 | ประจำปีการศึกษา 2546 |


Attempts all questions.

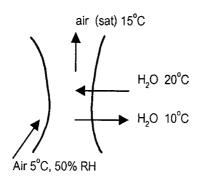

ผศ.คร.ชูเกียรติ คุปตานนท์ ผู้ออกข้อสอบ

| ข้อสอบ | คะแนน |
|--------|-------|
| 1      |       |
| 2      |       |
| 3      |       |
| 4      |       |
| รวม    |       |

Consider an ideal steam cycle that combines the reheat and the regenerative cycle. The net power output of the turbine is 100 MW. Steam enters the high-pressure turbine at 8 MPa, 550°C. After expansion to 0.6 MPa, some of the steam goes to an open feedwater heater and the balance is reheated to 550°C, after which it expands to 10 kPa

- a) Draw a line diagram of the unit and show the state points on a T-s diagram.
- b) What is the steam flowrate to the high pressure turbine?
- c) What power motor is required to drive each of the pumps?






ชื่อ-สกุล.....รหัส.....รหัส

2. Water enters a cooling tower at 20°C and leaves at 10°C. The air enters at 5°C and 50% RH, and leaves, saturated, at 15°C.

Determine the ratio of mass flowrate of entering water and air, and the percentage of entering water which leaves with the air as steam.

The pressure may be taken as  $101.3 \times 10^3$  N/m<sup>2</sup> throughout, and the enthalpy of vapor at entry is 2510 kJ/kg.



| ,        |    |                 |   |
|----------|----|-----------------|---|
| <b>4</b> |    | 200             |   |
| ଏପ-ଶୀ    | ଶି | 5'YX'\(\alpha\) | Δ |
| ш ш оп   | 01 | . 0 //01        |   |

- 3. Gaseous propane is burned with 50% excess air at a pressure of 970 mbar. If the enetering air is dry, determine :
  - a) the mole analysis of the product gas assuming complete combustion,
  - b) the dew point of the gas mixture, and
  - c) the percent of the  ${\rm H_2O}$  formed that is condensed if the product gases are cooled to  $20^{\circ}{\rm C}$ .

4. A gas turbine uses C<sub>8</sub>H<sub>18</sub>(liq.) as fuel and 400% theoritical air. The air and fuel enter at 25°C and the products of combustion leave at 627°C. The output and the fuel composition are measured and it is found to be 1 kg/kW.hr

Determine the heat transfer from the engine per kg.mole of fuel.

Given; enthalpy of  $C_8H_{18}(liq.)$  at  $25^{\circ}C = -249,950$  kJ/kg.mole