มหาวิทยาลัยสงขลานครินทร์ ## คณะวิศวกรรมศาสตร์ | Name | <i>No</i> | |-------------------------------------|----------------------| | วิชา 216-331 Thermodynamics II | ห้อง R 300 | | วันที่ 8 ตุลาคม 2546 | เวลา 13.30-16.30 น. | | การสอบปลายภาค ประจำภาคการศึกษาที่ 1 | ประจำปีการศึกษา 2546 | Attempts all questions. ผศ.คร.ชูเกียรติ คุปตานนท์ ผู้ออกข้อสอบ | ข้อสอบ | คะแนน | |--------|-------| | 1 | | | 2 | | | 3 | | | 4 | | | รวม | | Consider an ideal steam cycle that combines the reheat and the regenerative cycle. The net power output of the turbine is 100 MW. Steam enters the high-pressure turbine at 8 MPa, 550°C. After expansion to 0.6 MPa, some of the steam goes to an open feedwater heater and the balance is reheated to 550°C, after which it expands to 10 kPa - a) Draw a line diagram of the unit and show the state points on a T-s diagram. - b) What is the steam flowrate to the high pressure turbine? - c) What power motor is required to drive each of the pumps? ชื่อ-สกุล.....รหัส.....รหัส 2. Water enters a cooling tower at 20°C and leaves at 10°C. The air enters at 5°C and 50% RH, and leaves, saturated, at 15°C. Determine the ratio of mass flowrate of entering water and air, and the percentage of entering water which leaves with the air as steam. The pressure may be taken as 101.3×10^3 N/m² throughout, and the enthalpy of vapor at entry is 2510 kJ/kg. | , | | | | |----------|----|-----------------|---| | 4 | | 200 | | | ଏପ-ଶୀ | ଶି | 5'YX'\(\alpha\) | Δ | | ш ш оп | 01 | . 0 //01 | | - 3. Gaseous propane is burned with 50% excess air at a pressure of 970 mbar. If the enetering air is dry, determine : - a) the mole analysis of the product gas assuming complete combustion, - b) the dew point of the gas mixture, and - c) the percent of the ${\rm H_2O}$ formed that is condensed if the product gases are cooled to $20^{\circ}{\rm C}$. 4. A gas turbine uses C₈H₁₈(liq.) as fuel and 400% theoritical air. The air and fuel enter at 25°C and the products of combustion leave at 627°C. The output and the fuel composition are measured and it is found to be 1 kg/kW.hr Determine the heat transfer from the engine per kg.mole of fuel. Given; enthalpy of $C_8H_{18}(liq.)$ at $25^{\circ}C = -249,950$ kJ/kg.mole