Examination : Mid Exam - Session $2 \quad$ Year : 2003

Date: 27 Dec 2003
Subject : 240-205 Digital Systems and Logic Design

Time :13.30-16.30
Room :

NOTE

- There are 7 questions 14 pages (not include cover page). Answer all questions
- All questions are of different values.
- Calculator, textbooks and hand-out are prohibited.
- Every answer must be clear and show your working to get the answer.
- All answers must be given in ink, in English
- Unless otherwise indicated, pencils should only be used for graphical work.

Student ID : \qquad Name : \qquad Section : \qquad

Question	1	2	3	4	5	6	7
Scores							

Student ID :

Q1. A repetitive pulse waveform has a logic 1 for 1 ms and a logic 0 for 7 ms in each period.
(a) What is the period of the waveform? (2 marks)

Answer \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) What is the frequency of the waveform? (2 marks)

Answer \qquad
\qquad
\qquad
\qquad
\qquad
(c) What is the duty cycle of the waveform? (3 marks)

Answer \qquad
\qquad
\qquad
\qquad
(d) What is the average rise time, t_{LH} and fall time t_{HL} if the gate used to generate this waveform is a type 74LS08? (See appendix for data sheets) (3 marks)
Answer \qquad

Q2. (a) What is the binary equivalent of 10.375 ?

Answer \qquad
\qquad
\qquad
\qquad
\qquad
(b) What is the number range of an 8 bit 2's complement number?
(3 marks)
Answer \qquad
\qquad
\qquad
\qquad
(c) Express -42 as a 2 's complement number
(3 marks)

Answer

\qquad
(d) Express -0.1 as a 9 bit 2's complement number. (3 marks)

Answer

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Divide the 2's complement number 10000011 by 00011001

Answer
\qquad
(f) Add the BCD number 01100111 with 01011001
(4 marks)

Answer

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q3.

(a) Identify the logic function X and Y
(2 marks)

Answer

\qquad
\qquad
\qquad
(b) Sketch the waveforms X and Y , taking into account the gate propagation delays (assume all gates have a propagation delay of 8 ns)
(4 marks)
Answer

\qquad
$-\ldots-\ldots-\ldots-\ldots-\ldots-\ldots$
\qquad
$-\infty-\ldots-\infty-\infty-\infty-\infty-\infty$
\qquad
(c) What is the longest period when the Y output is incorrect?

Student ID :
Name:

Answer

Q4.

(a) Simplify the circuit of Fig. 2 using Boolean algebra.
(3 marks)

Answer
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Draw the simplified logic circuit and construct the truth table
(2 marks)

Answer

\qquad

Q5. (a) Draw the Karnaugh map for the standard SOP expression
 $X=\bar{D} \bar{C} \bar{B} \bar{A}+\bar{D} \bar{C} B \bar{A}+\bar{D} \bar{C} B A+\bar{D} C \bar{B} \bar{A}+\bar{D} C \bar{B} A+\bar{D} C B A+D \bar{C} \bar{B} \bar{A}+D \bar{C} \bar{B} A+D \bar{C} B \bar{A}+D C \bar{B} A+D C B \bar{A}$

(4 marks)

Answer

\qquad
(b) Use the map to obtain a minimized expression for X (4 marks)

Answer

\qquad
\qquad
\qquad
\qquad
(c) Draw the logic diagram for the minimized expression for X
(2 marks)
Answer \qquad

Q6. A silicon foundry(โัรงห่อ) factory has an airlock to prevents entry of polluted air into a cleanroom where wafers are processed as shown in Fig. 3

Factory

Fig. 3
Personal are required to put on a cleanroom suit(สูท) when entering the cleanroom before opening Door B and are required to take it off before opening Door A.

Sensor on the person and suit cause an alarm S if these rules are broken.

A pressure sensor causes an alarm P if the airlock pressure rises above the cleanroom pressure.

Door A maybe opened if a person wishes to enter the airlock from the factory and Door B is closed and there is not a person already in the airlock.

Door B maybe opened if a person wishes to enter the airlock from the cleanroom and Door A is closed and there is not a person already in the airlock.

A person in the airlock may open door A without a suit or Door B with a suit.

Suit alarm S is activated if a person in the airlock tries to open Door A with a suit or Door B without a suit.

Pressure alarm P is activated if the pressure in the airlock rises above the pressure in the cleanroom.

Student ID :

Name:
(a) Develop a logic to open and close Doors A, B (8 marks)

Answer
\qquad
(b) Discuss the use of alarms S and P
(2 marks)

Answer

Student ID :

Name:
Q7. Fig. 4 represents a multiplier circuit that takes two-bit binary numbers $x_{1} x_{0}$ and $y_{1} y_{0}$ and produces an output binary number $z_{3} z_{2} z_{1} z_{0}$ that is equal to arithmetic product of the two input numbers (14 marks)

Fig. 4
(a) Design the logic circuit for the multiplier.

Answer \qquad
Student ID
Name:
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad \longrightarrow
\qquad

Student ID :
Name:
(b) Draw the logic diagram by using only NAND gate for output Z1 of Q7. (a)
(6 marks)

Appendix

DM74LS08
Quad 2-Input AND Gates

General Description

This device contains four independent gates each of which performs the logic AND function.

Features

- Alternate Military/Aerospace device (54LSC8) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Dual-In-Line Package

Order Number 54LS08DMQB, 54LS03FMQB, 54LS08LMQB, DM54LS08J, DM54LS08W, DM74LS08M or DM74LS08N See NS Package Number E20A, J14A, M14A, N14A or W14B

Function Table
$Y=A B$

Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

H = High Logic Leval
L = Low Logic Lewal

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
V	

Irput Voltage
$7 V$
Operating Free Air Temperature Range

DM54LS and 54LS	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS08			DM74LS08			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C o}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{1+}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Irput Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {r }}$	High Level Output Current			-0.4			-0.4	mA
$\mathrm{I}_{\text {OL }}$	Low Level Ouput Curent			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	C

 Candtars" fatla will deme the oandtiars far achel dentor aperation

Electrical Characteristics

over recommended operating free air temperature range (urless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{cc}}=$ Min, $\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{CH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CO}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$V_{c L}$	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{cc}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\text {OL }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {CO }}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{cc}}=$ Max, $\mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{I}_{\text {IH }}$	High Level Irput Current	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{1 \mathrm{~L}}$	Low Level Input Current	$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
$\mathrm{I} \times$	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max } \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{COH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$			2.4	4.8	mA
$\mathrm{I}_{\text {COL }}$	Supply Current with Outputs Low	$V_{c c}=$ Max			4.4	8.8	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low io High Level Output	4	13	6	18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	11	5	18	ns

Note 2: Al typicals are ot $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Nat more than one cutpit should be shorted at a time, and the duration should not exceed one second.

Blank Sheet

