Faculty of Engineering

Prince of Songkla University

Midterm Examination Paper : Semester II Academic year : 2003

Date: December 27th,2003 **Time**: 9.00-12.00

Subject : 231-322 Chemical Engineering Kinetics & Room: R300

Reactor Design II

คำสั่ง

- > ตอบคำถามทุกข้อโดยอ่านคำถามให้เข้าใจ ละเอียด ถี่ถ้วนก่อนทำ
- ห้ามนำข้อสอบบางส่วนหรือทั้งหมดออกจากห้องสอบ
- ห้ามนำหนังสือหรือเอกสารใดๆ ที่นอกเหนือจากที่อนุญาตเข้าห้องสอบ
- ห้ามหยิบยืมเอกสารใดๆ และพูดคุยกับนักศึกษาอื่นขณะทำข้อสอบ

อนุญาต

- > สมุดโน้ตของตนเอง 1 เล่มที่จดด้วยลายมือตัวเอง และหนังสือเรียนของ H.Scott Fogler เข้าห้อง สอบได้ (นักศึกษาสามารถนำพจนานุกรมภาษาอังกฤษ-ไทย เข้าห้องสอบได้)
- > นำเครื่องคิดเลขทุกรุ่นเข้าห้องสอบได้
- ใช้ดินสอทำข้อสอบได้

สำหรับนักศึกษา									
ชื่อ	ชื่อรหัส								
	ره			1 _	1 .				1
	ข้อ	1	2	3	4	5	6		
	คะแนนเต็ม	30	25	25	35	40	25	180	
	ทำได้								

ข้อสอบมีทั้งหมด 6 ข้อ 10 หน้า (รวมปก) ดูความเรียบร้อยก่อนลงมือทำ

ดร. ชญานุช แสงวิเชียร 20 ธันวาคม 2546

Problem 1 (30 points)

(a) (10 points)

What reaction schemes and conditions would you use to maximize the selectivity parameters S for the following parallel reactions:

$$A + C \rightarrow D$$
 $r_D = 800 e^{(-2000/T)} C_A^{0.5} C_C$

$$A + C \rightarrow U_1$$
 $r_u = 10 e^{(-300/T)} C_A C_C$

where D is the desired product and U is the undesired product?

(b) (10 points)

State how your answer to part (a) would change if C were to react with D to form another product,

$$A + C \rightarrow D$$
 $r_D = 800 e^{(-2000/T)} C_A^{0.5} C_C$

$$D + C \rightarrow U_2$$
 $r_u = 1000 e^{(8000/T)} C_C C_D$

At what reaction schemes and conditions should be operated?

(c) (10 points)

Consider all reactions in part (a) and (b) for a 2-dm³ laboratory CSTR (isothermal reactor at 1200 K) with C_{CO} = C_{AO} = 1 mol/dm³ and υ_o = 1 dm³/min. Please write all equations that used in POLYMATH to calculate the yield.

Problem 2 (25 points)

Consider the following reactions:

Using a plug flow reactor, write down all equations that you need in order to calculate the molar flow rate of each species as a function of volume.

Problem 3 (25 points)

For the decomposition of ozone in an inert gas M, the following is the proposed mechanism. Derive the rate expression of ozone using pseudo-steady-state-hypothesis.

$$M + O_3 \xrightarrow{k_1} O_2 + O + M$$

$$O_3 + O \xrightarrow{k_3} 2O_2$$

Problem 4 (35 points)

Derive a rate law for the consumption of CO. Assume that all the reactions are elementary and that the PSSH holds for the O, OH and Cl radicals

$$O + O \qquad O_2 \qquad \stackrel{k_1}{\longrightarrow} \qquad D_2 \qquad \stackrel{k_2}{\longrightarrow} \qquad 2OH \qquad D_2 \qquad \stackrel{k_2}{\longrightarrow} \qquad 2OH \qquad D_2 \qquad \stackrel{k_3}{\longrightarrow} \qquad CO_2 + H \qquad D_2 \qquad \stackrel{k_4}{\longrightarrow} \qquad OH \qquad + O \qquad DH \qquad + O \qquad DH \qquad + CI \qquad \stackrel{k_5}{\longrightarrow} \qquad H_2 + CI \qquad DH \qquad + CI \qquad \stackrel{k_6}{\longrightarrow} \qquad HCI \qquad D_2 \qquad D_2 \qquad D_3 \qquad D_4 \qquad D_4 \qquad D_5 \qquad$$

Problem 5 (40 points)

The endothermic liquid-phase elementary reaction

$$A + B \rightarrow C$$
 $(x_A = 1.0)$

proceeds to completion in a single steam-jacketed, continuous-stirred reactor.

From the following data, calculate the steady state reactor temperature:

Reactor volume : 125 gal Steam jacket area : 10 ft²

Jacket steam: 150 psig (365.9 °F saturation temperature)

Overall heat transfer coefficient of jacket, U: 150 Btu/h.ft².°F

Agitator shaft horsepower: 25 hp

Heat of reaction, ΔH°_{Rx} = +20,000 Btu/lb mol of A (independent of temperature)

	Component A	Component B	Component C
Feed (lbmol/hr)	10.0	10.0	0
Feed temp (°F)	80	80	-
Specific heat (Btu/lbmol.°F)	51.0	44.0	47.5
Molecular weight	128	94	-
Density (lb/ft ³)	63.0	67.2	65.0

Problem 6 (25 points)

The reaction

is carried out adiabatically in a series of staged packed-bed reactors with interstage cooling. The feed enters at 300 K and the feed is equal molar in A and B and the catalyst weight in each reactor is sufficient to achieve 99.9 % of the equilibrium conversion.

Additional information:

$$\Delta H_{Rx}$$
 = -30,000 cal/mol A
$$C_{pA}$$
 = C_{pB} = C_{pC} = C_{pD} = 25 cal/g.mol.K
$$K_{e}(50~^{\circ}C)$$
 = 500,000
$$F_{AO}$$
 = 10 mol A/min

Calculate the data of equilibrium conversion vs. Temperature

Т	Xe
300	
340	
380	
420	
500	