

Prince of Songkla University Faculty of Engineering

Midterm Test
20 December 2003
13:30-16:30
216-231 Principles of Thermodynamics

Name \qquad ID \qquad

Direction:

1. All types of calculators, document and books are permitted.
2. There are totally 5 problems, 9 pages. Solve all of them, will you?
3. Two pages of self-written A4 paper are allowed. No photocopy, please.
4. Any types of calculator and dictionary are allowed.

Perapong Tekasakul Instructor

Problem No.	Full score	Your mark
1	20	
2	20	
3	20	
4	20	
5	$\mathbf{1 0 0}$	
Total		

216-231 Priciples of Thermodynamics
 Mid-Term Test
 Semester 2/2546

1. Answer the following questions as clear as possible. (20 points)
(a) Explain how you will determine properties (for example, specific volume) of a vapor-liquid mixture of water in equilibrium condition. (3 points)
(b) What is the isolated system? (2 points)
(c) Can a non-adiabatic and irreversible process be a constant entropy process? Explain. (3 points)
(d) What is Thermodynamic property? Are heat and enthalpy properties?. (3 points)
(e) If I want you to use the First Law relation for a closed system as

$$
\Delta E=Q+W
$$

What should the sign notation of Work be? (2 points)
(f) Takzin told you that he had built a refrigerator that maintains the refrigerated space at $1^{\circ} \mathrm{C}$ while operating in a room where the temperature is $27^{\circ} \mathrm{C}$ and has a COP of 11.4. Is he a trustworthy guy or just a plain liar? (3 points)
(g) Is the First Law itself sufficient in analysis of thermodynamic cycle? Explain (2 points)
(h) What is the meaning of the Principle of Increase of Entropy? (2 points)
2. A piston-cylinder device initially contains $0.1 \mathrm{~m}^{3}$ of saturated vapor water at 2 bar. Heat is slowly removed from the system until mass of water vapor and liquid is equal. (20 points)
(a) Show the process on a $T-v$ diagram and specify direction by an arrow.
(b) What is the mass of water?
(c) Determined specific volume at initial and final states.
(d) Determined specific enthalpy at initial and final states.
3. During expansion and compression processes in piston-cylinder devices, the gas has been observed to satisfy the relation $p V^{1.44}=C$, where C is the constant. Calculate the work done when a gas expands from a state of 150 kPa and $0.03 \mathrm{~m}^{3}$ to a final volume of $0.2 \mathrm{~m}^{3}$. If an amount of 100 kJ of heat is transferred to the gas, determine the change of internal energy of the gas. (20 points)
4. CO_{2} enters an adiabatic compressor at 100 kPa and 300 K at a rate of $0.4 \mathrm{~kg} / \mathrm{sec}$ and leaves at 500 kPa and 400 K . Neglecting kinetic energy changes, determine. (20 points)
(a) the volume flow rate of the CO_{2} at the compressor outlet, and.
(b) the power input to the compressor.
5. Air is compressed in a piston-cylinder device from 10 psia and $70^{\circ} \mathrm{F}$ to 82 psia in an isentropic process. Determine the final temperature and the work done during this process (20 points)

Important notes and tables

$$
\text { Gas constant for } \begin{aligned}
\mathrm{CO}_{2}: R_{\mathrm{CO}_{2}} & =188.9 \mathrm{~J} / \mathrm{kg} . \mathrm{K} \\
& =0.3704 \mathrm{psia} \mathrm{ft}
\end{aligned}{ }^{3} / \mathrm{lbm} .{ }^{\circ} \mathrm{R}
$$

Conversion factors: $1 \mathrm{bar}=0.1 \mathrm{MPa}$
Table 1: Saturated water.

		Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, k J/kg			Enthatpy, kJ/kg			$\begin{aligned} & \text { Entropy, } \\ & \text { KJ/Kg } \cdot \mathbf{K} \text {) } \end{aligned}$		
$\begin{aligned} & \text { Press., } \\ & \text { PkPa } \end{aligned}$	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{t}	Sat. vapor, v_{g}	Sat. Ilquid, u_{r}	$\begin{aligned} & \text { Evap.; } \\ & u_{f g} \end{aligned}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., h_{fg}	Sat. vapor; h_{g}	Sat. liquid, s_{f}	Evap.g $s_{f g}$	Sat. vapor, s_{g}
0.6113	0.01	0.001000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.1562
1.0	6.98	0.001000	129.21	29.30	2355.7	2385.0	29.30	2484.9	2514.2	0.1059	8.8697	8.9756
1.5	13.03	0.001001	87.98	54.71	2338.6	2393.3	54.71	2470.6	2525.3	0.1957	8.6322	8.8279
2.0	17.50	0.001001	67.00	73.48	2326.0	2399.5	73.48	2460.0	2533.5	0.2607	8.4629	8.7237
2.5	21.08	0.001002	54.25	88.48	2315.9	2404.4	88.49	2451.6	2540.0	0.3120	8.3311	8.6432
3.0	24.08	0.001003	45.67	101.04	2307.5	2408.5	101.05	2444.5	2545.5	0.3545	8.2231	8.5776
4.0	28.96	0.001004	34.80	121.45	2293.7	2415.2	121.46	2432.9	2554.4	0.4226	8.0520	8.4746
5.0	32.88	0.001005	28.19	137.81	2282.7	2420.5	137.82	2423.7	2561.5	0.4764	7.9187	8.3951
7.5	40.29	0.001008	19.24	168.78	2261.7	2430.5	168.79	2406.0	2574.8	0.5764	7.6750	8.2515
10	45.81	0.001010	14.67	191.82	2246.1	2437.9	191.83	2392.8	2584.7	0.6493	7.5009	8.1502
15	53.97	0.001014	10.02	225.92	2222.8	2448.7	225.94	2373.1	2599.1	0.7549	7.2536	8.0085
20	60.06	0.001017	7.649	251.38	2205.4	2456.7	251.40	2358.3	2609.7	0.8320	7.0766	7.9085
25	64.97	0.001020	6.204	271.90	2191.2	2463.1	271.93	2346.3	2618.2	0.8931	6.9383	7.8314
30	69.10	0.001022	5.229	289.20	2179.2	2468.4	289.23	2336.1	2625.3	0.9439	6.8247	7.7686
40	75.87	0.001027	3.993	317.53	2159.5	2477.0	317.58	2319.2	2636.8	1.0259	6.6441	7.6700
50	81.33	0.001030	3.240	340.44	2143.4	2483.9	340.49	2305.4	2645.9	1.0910	6.5029	7.5939
75	91.78	0.001037	2.217	384.31	2112.4	2496.7	384.39	2278.6	2663.0	1.2130	6.2434	7.4564
Press.,MPa												
0.100	99.63	0.001043	1.6940	417.36	2088.7	2506.1	417.46	2258.0	2675.5	1.3026	6.0568	7.3594
0.125	105.99	0.001048	1.3749	444.19	2069.3	2513.5	444.32	2241.0	2685.4	1.3740	5.9104	7.2844
0.150	111.37	0.001053	1.1593	466.94	2052.7	2519.7	467.11	2226.5	2693.6	1.4336	5.7897	7.2233
0.175	116.06	0.001057	1.0036	486.80	2038.1	2524.9	486.99	2213.6	2700.6	1.4849	5.6868	7.1717
0.200	120.23	0.001061	0.8857	504.49	2025.0	2529.5	504.70	2201.9	2706.7	1.5301	5.5970	7.1271
0.225	124.00	0.001064	0.7933	520.47	2013.1	2533.6	520.72	2191.3	2712.1	1.5706	5.5173	7.0878
0.250	127.44	0.001067	0.7187	535.10	2002.1	2537.2	535.37	2181.5	2716.9	1.6072	5.4455	7.0527
0.275	130.60	0.001070	0.6573	548.59	1991.9	2540.5	548.89	2172.4	2721.3	1.6408	5.3801	7.0209
0.300	133.55	0.001073	0.6058	561.15	1982.4	2543.6	561.47	2163.8	2725.3	1.6718	5.3201	6.9919
0.325	136.30	0.001076	0.5620	572.90	1973.5	2546.4	573.25	2155.8	2729.0	1.7006	5.2646	6.9652
0.350	138.88	0.001079	0.5243	583.95	1965.0	2548.9	584.33	2148.1	2732.4	$\{.7275$	5.2130	6.9405
0.375	141.32	0.001081	0.4914	594.40	1956.9	2551.3	594.81	2140.8	2735.6	1.7528	5.1647	6.9175
0.40	143.63	0.001084	0.4625	604.31	1949.3	2553.6	604.74	2133.8	2738.6	1.7766	5.1193	6.8959
0.45	147.93	0.001088	0.4140	622.77	1934.9	2557.6	623.25	2120.7	2743.9	1.8207	5.0359	6.8565
0.50	151.86	0.001093	0.3749	639.68	1921.6	2561.2	640.23	2108.5	2748.7	1.8607	4.9606	6.8213
0.55	155.48	0.001097	0.3427	655.32	1909.2	2564.5	665.93	2097.0	2753.0	1.8973	4.8920	6.7893
0.60	158.85	0.001101	0.3157	669.90	1897.5	2567.4	670.56	2086.3	2756.8	1.9312	4.8288	6.7600
0.65	162.01	0.001104	0.2927	683.56	1886.5	2570.1	684.28	2076.0	2760.3	1.9627	4.7703	6.7331
0.70	164.97	0.001108	0.2729	696.44	1876.1	2572.5	697.22	2066.3	2763.5	1.9922	4.7158	6.7080
0.75	167.78	0.001112	0.2556	708.64	1866.1	2574.7	709.47	2057.0	2766.4	2.0200	4.6647	6.6847
0.80	170.43	0.001115	0.2404	720.22	1856.6	2576.8	721.11	2048.0	2769.1	2.0462	4.6166	6.6628
0.85	172.96	0.001118	0.2270	731.27	1847.4	2578.7	732.22	2039.4	2771.6	2.0710	4.5711	6.6421
0.90	175.38	0.001121	0.2150	741.83	1838.6	2580.5	742.83	2031.1	2773.9	2.0946	4.5280	6.6226
0.95	177.69	0.001124	0.2402	751.95	1830.2	2582.1	753.02	2023.1	2776.1	2.1172	4.4869	6.6041
1.00	179.91	0.001127	0.19444	761.68	1822.0	2583.6	762.81	2015.3	2778.1	2.1387	4.4478	6.5865
1.10	184.09	0.001133	0.17753	780.09	1806.3	2586.4	781.34	2000.4	2871.7	2.1792	4.3744	6.5536
1.20	187.99	0.001139	0.16333	797.29	1791.5	2588.8	798.65	1986.2	2784.8	2.2166	4.3067	6.5233
1.30	191.64	0.001144	0.15125	813.44	1777.5	2591.0	814.93	1972.7	2787.6	2.2515	4.2438	6.4953

Table 2: Ideal gas properties

Temperature, \mathbf{K}	$\begin{aligned} & C_{\rho} \\ & \mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}) \\ & \hline \end{aligned}$	$\begin{aligned} & C_{\mathbf{v}} /(\mathbf{k g} \cdot \mathbf{K}) \\ & \hline \end{aligned}$	k	$\begin{aligned} & C_{\rho}(\mathbf{k g} \cdot \mathbf{K}) \\ & \mathbf{k J} \mathbf{J} \end{aligned}$		k	$\begin{aligned} & C_{\rho} \\ & \mathbf{k J} /(\mathbf{k g} \cdot \mathbf{K}) \end{aligned}$	$\begin{aligned} & C_{\mathrm{V}}(\mathbf{k g} \cdot \mathbf{K}) \end{aligned}$	k
	Air			Carbon dioxide, $\mathbf{C O}_{\mathbf{2}}$			Carbon monoxide, CO		
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335
	Hydrogen, H_{2}			Nitrogen, $\mathbf{N}_{\mathbf{2}}$			Oxygen, O_{2}		
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313

Scratch paper: This page can be removed.

