PRINCE OF SONGKLA UNIVERSITY

FACULTY OF ENGINEERING

Final Examination: Semester 2
Date: February 26, 2004
Subject Number: 240-426
Subject Title: Unix Network Programming

Academic Year: 2003-2004
Time: 13:30-16:30
Room: R300

Exam Duration: 3 hours
This paper has 4 pages (including this page).

Authorised Materials:

- Anything the student can carry.

Instructions to Students:

- Answer questions in English. Good English is not required.
- Attempt all questions
- Write answers in an answer book
- Start the answer to each question on a new page.
- Clearly Number the answers. It is not required that questions be answered in order.
- Anything illegible is incorrect.
- Answer briefly where possible, essays are not required.
- The marks allocated for each question are shown next to that question. There are 100 marks total for this examination. This will contribute 30% of the course total.

Question 1.

What is a Well Known Port Number?
How would a program often be written if it is to use a well known port? Explain the most common way a port number that is not well known would be used.

Question 2.

(5 marks)
The setsockopt system call has a level parameter. Explain the meaning of that parameter? That is, what is its purpose, and how is it used?

Question 3.

(15 marks)
What is Out Of Band data?
What is its purpose in network protocols?
How would a UNIX application program transmit out of band data when using TCP? (You can use some brief sample C code as part of the explanation if desired.)

Question 4.

(15 marks)
Explain the $\operatorname{accept}(2)$ system call. What is its function? What effects does it have upon the program?
The value of N in the following code fragment can be 0 or 1 (zero or one).

```
int value = N;
(void) ioctl(sock, FIONBIO, &value);
```

If the socket (sock) in the code fragment shown is later used as the socket argument (first argument) to an accept system call, what difference (if any) would it make to the operation of that accept call if the value of the \mathbf{N} constant in the code fragment was 0 or 1?

Question 5.

(20 marks)
A program includes the following code:

```
/* assume all necessary .h files have been included */
    int s, pid;
    int on = 1;
s = socket(dest->sa_family, SOCK_STREAM, 0);
pid = getpid();
(void)ioctl(s, FIOSETOWN, &pid);
(void)ioctl(s, FIOASYNC, &on);
(void)signal(SIGIO, io_sig_handler);
```

Explain what the program is intending to accomplish with this code sequence.
Write the function io_sig_handler which might be used together with the code shown.
Explain how your function would operate with the rest of the program (which is not shown, and which you do not have to write).

Question 6.

A program using SOCK_STREAM (TCP) sockets, performs the following 3 write system calls, and only these (since the connection was established):

```
write(sock, "hello", 5);
write(sock, " ", 1);
write(sock, "there.", 6);
```

The peer to the above program, that is, the partner program it is communicating with, after receiving the incoming connection, performs the following read system call:

```
char buffer[200];
n = read(mysock, buffer, 200);
```

What values for n (the result from the read system call) are possible here? What might the different return values indicate?

Question 7.

 (10 marks)Explain the use of pseudo-terminals (pty) in networking operations. Why is it sometimes necessary to use a pseudo-terminal (pseudo-tty)? Which kinds of network applications are most likely to require to use pseudo-terminals?

Question 8.

(10 marks)

It is possible to use the connect system call on a socket that was created as SOCK_DGRAM. That is, a datagram socket, which by definition, selects a protocol which does not use connections (such as UDP).
What is achieved by using connect on a datagram socket?
That is, why would some programs perform this operation?

