ชื่อ	รหัสประจำตัว
шш	PIN TO DIAL DE CONTRACTOR

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester II (#3)

Date: 19 February 2004

Subject: 230-630 Advanced Transport Phenomena I

Academic Year: 2003

Time: 9.00-12.00

Room: A400

- ข้อสอบมี 5 ข้อ จำนวน 10 หน้า ต้องทำทุกข้อ คะแนนเต็ม 80 คะแนน

- ควรใช้เวลาทำข้อสอบโดยเฉลี่ย 2 นาที/คะแนน

ข้อที่	คะแนนเต็ม	ได้คะแนน
1	15	
2	10	
3	20	
4	15	
5	20	
รวม	80	

- ขอให้นักศึกษาทำข้อสอบในที่ว่างซึ่งได้เตรียมไว้สำหรับข้อสอบแต่ละข้อ โดยอาจใช้เนื้อที่ด้าน หลัง ทำข้อสอบเพิ่มเติมได้
- อนุญาตให้นำหนังสือ เอกสาร เครื่องคำนวณ และอุปกรณ์อื่นๆ เข้าห้องสอบได้

สุธรรม สุขมณี ผู้ออกข้อสอบ 5 กุมภาพันธ์ 2547

ชื่อ	2 -	รหัสประจำตัว
1)	Predict D_{AB} for an equimolar mixture of N_2 and C_2H_6 :	
	(a) At 323.7 K and 1 atm.	(5 points)
	(b) At 323.7 K and 40.8 atm.	(10 points)

- This page is provided for problem #1 -

_	4	
ط	Л	ی ا ہ
ท อ	- 4 -	รหสประจำตว
		d V I b V I I I d o o o o o o o o o o o o o o o o

2) Verify the relations between fluxes used for interrelating expressions in mass units and those in molar units in binary systems using only the definitions of concentrations, velocities, and fluxes:

$$\frac{j_A}{\rho \omega_A \omega_B} = \frac{J_A^*}{c x_A x_B}$$
 (10 points)

	_	
പ്	_	ب ا
ชอ	-) -	รหสประจาตว
UU		

Derive an expression for the steady concentration distribution (C_A) and mass transfer rate (W_A) of gas A in the hollow porous cylinder with a constant effective mass diffusivity of D_A , an inside radius of κR , an outside radius of R and a length of L. The concentration of A inside and outside the cylinder are $C_{A\kappa}$ and C_{AR} respectively. For the diffusion of gas A in porous medium at constant temperature and pressure, one may assume that the molar flux of A relative to stationary

plane as:
$$N_{Ar} = -D_A \frac{dC_A}{dr}$$
 (20 points)

- This page is provided for problem #3 -

ชื่อ	- 7 -	รหัสประจำตัว
DO	,	

- Estimate the rate of absorption of CO₂ (component *A*) from a carbon dioxide bubble 0.5 cm in diameter rising through pure water (component *B*) at 18 °C and at a pressure of 1 atm. The following data may be used: $D_{AB} = 1.46 \times 10^{-5} \text{ cm}^2/\text{s}$, $c_{A0} = 0.041 \text{ g-mole/liter}$, $v_t = 22 \text{ cm/s}$, $c_{B0} = 1 \text{ g/cm}^3$, $u_D = 1 \text{ cP}$
 - $\rho_B = 1 \text{ g/cm}^3, \ \mu_B = 1 \text{ cP}.$ (a) Using liquid falling film model
 - (b) Using a surface-averaged mass transfer coefficient k_m (10 points)

(5 points)

- This page is provided for problem #4 -

Moisted air with an uniform temperature of 30 °C and a pressure of 122 kPa (ρ = 1.4 kg/m³, c = 48.3 mole/m³, μ = 0.01822 mPa.s) is flowing in a smooth circular pipe of diameter 54.1 mm with a mass flow rate of 69.7 kg/h. Beginning at z = 0 to z = L, there is a absorbing device that remove water vapor (component A) from an air stream (component B) to the tube wall with a constant molar concentration of water vapor c_{A0} of 0.097 mole/m³. If the bulk concentration of water vapor at z = 0 (c_{AbI}) and z = L (c_{Ab2}) are 1.21 mole/m³ and 0.242 mole/m³ respectively and the diffusivity of water vapor in air (D_{AB}) at 30 °C is 1.78×10⁻⁵ m²/s. Find the average molar flux of water vapor at the tube wall (N_{A0}).

- This page is provided for problem #5 -