PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination : Semester II Date : 20 February 2004 Subject : 231-322 Chemical Engineering Kinetics and Reactor Design II

Academic Year : 2003 Time : 13.30-16.30 Room : R 300

Student Name: ID No :

	Question	Full Marks	Marks Received
Number of questions : 4	1	20	
Time : 3 hours	2	25	
Total marks : 100	3	25	
Books and lecture notes are allowed	4	30	
Calculators are allowed	Total	100	

1)

Adsorption isotherms for hydrogen adsorption on Ni solid was measured in the laboratory. The data in Table below were obtained at 89^oC. How well do these data fit the Langmuir adsorption isotherm ? Determine the type of adsorption.

If $\theta = \frac{\text{concentration of sites with adsorbed molecule on solid catalyst}}{\text{concentration of all monomolecular layer sites on solid catalyst}}$

$$\theta = \frac{C_{A.S}}{C_t}$$

where A = adsorbed molecule

Table The amount of hydrogen adsorbed at 89° C on Ni solid sample as a function of the hydrogen pressure

Pressure (torr)	Coverage (monolayer)			
$6 \ge 10^{-7}$	0.667			
1 x 10 ⁻⁶	0.781			
$2 \ge 10^{-6}$	0.845			
3×10^{-6}	0877			
$4 \ge 10^{-6}$	089			
$6.25 \ge 10^{-6}$	0.91			
$9 \ge 10^{-6}$	093			
$1.25 \ge 10^{-5}$	0.959			
1.5×10^{-5}	0.975			
2×10^{-5}	0.984			

(20 marks)

Answer Q1(continued)

2)

An 8.01-g sample of Glaucosil solid is studied with N_2 adsorption at -195.8 °C. The following data are obtained:

Pressure, mm Hg , (p)	6	25	140	230	285	320	430	505
Volume adsorbed, (v)	61	127	170	197	215	230	277	335
cm^3 (at 0 $^{\circ}\text{C}$ and 760 mmHg)								

The vapor pressure (p_0) of N₂ at -195.8 °C is 760 mmHg and density is 0.808 g/cm³.

a) Plot volume adsorbed vs pressure

b) Plot $\frac{p}{v(p_0 - p)}$ (cc⁻¹) vs $\left(\frac{p}{p_0}\right)$ The BET equation is $\frac{p}{v(p_0 - p)} = \frac{1}{v_m c} + \frac{(c - 1)p}{cv_m p_0}$

c) From the plot in (b) determine intercept (I) and slope (s) $% \left({{{\bf{n}}_{\rm{s}}}} \right)$

Note that: volume of adsorbed gas as monolayer, $V_m = \frac{1}{I+s}$

d) Estimate the surface area in square meters per gram of the sample.

(25 marks)

Answer Q2(continued)

Answer Q2(continued)

3)

CO reacts with H_2O over Fe_2O_3 catalyst to form H_2 and CO_2 . The rate law has been found to agree with the experimental data and is shown below.

$$\rm CO + H_2O \rightarrow H_2 + CO_2$$

$$-r_{\rm CO}' = \frac{k_1 P_{\rm CO} P_{\rm H_2O} - k_2 P_{\rm H_2} P_{\rm CO_2}}{(1 + k_3 P_{\rm CO} + k_4 P_{\rm H_2O} + k_5 P_{\rm CO_2} + k_6 P_{\rm H_2})^2}$$

Base on your experience with other reaction systems, please propose an adsorptionsurface reaction-desorption mechanism and specify the rate-limiting step that will explain the experimental rate law for this reaction.

Suggest derivation for the rate law from the proposed mechanism.

(25 marks)

Answer Q3(continued)

4)

a) A well-mixed CSTR with solid catalyst is used to crack crude oil A in the gas phase to gas products. The feed stream contains 80% A and 20% inert I. The reaction is first-order in the crude oil concentration. The catalyst decays with first-order rate in the present activity and first-order in the reactant concentration. The volumetric flow rate to the reactor is 5,000 m³/h. The reactor contains 50,000 kg of catalyst with bulk density 500 kg/m³.

A (g)
$$\rightarrow$$
 B (g) + C (g)
C_{Ao} = 0.8 mol/dm³ $k = \mathbf{\rho}_{B}k' = 45 h^{-1}$
C_{To} = 1.0 mol/dm3 $k_{d} = 9 \text{ dm}^{3}/\text{mol.h}$

- a.1) Explain how to obtain equations for -da/dt, dC_A/dt and X(t).
- a.2) If it is required to solve these equations for a(t), C_A(t) and X(t) by manual calculation using your hand calculator, explain clearly how to solve them. What are the problems?
- a.3) In this problem, explain why conversion decreases with time while C_A increases with time.
- a.4) If a = 1.0 at t = 0 h. and $C_A = 0.42$ and 0.51 mol/dm³ at 0.1 and 0.3 h respectively, calculate the corresponding X at time 0.1 and 0.3 h
 - (15 marks)

b) Briefly explain the cause and effects of deactivation of catalyst by sintering.

(5 marks)

c) What is a trickle-bed reactor?

(5 marks)

d) Explain the mechanism of mass transfer at the external surface of solid catalyst for reaction $A \rightarrow B$.

(5 marks)

Answer Q4(continued)

_____ End of last page