PRINCE OF SONGKLA UNIVERSITY
FACULTY OF ENGINEERING

Department of Computer Engineering

Midterm Examination: Semester 1 Academic Year: 2004-2005
Date: 31st July 2004 Time: 9.00 — 11.00 (2 hours)
Subject Number: 240-304 Room: The Robot's Head

Subject Title: Mathematics for Computer Engineering

Lecturer: Aj. Andrew Davison

Exam Duration: 2 hours

This paper has 4 pages.

Authorized Materials:

e Writing instruments (e.g. pens, pencils).
¢ Books (e.g. dictionaries) and calculators are not permitted.

Instructions to Students:

o Answer questions in English. Perfect English is not required.

e Attempt all questions.

e Write your answers in an answer book.

Start your answer to each question on a new page

Clearly number your answers.

Any unreadable parts will be considered wrong.

When writing programs, use good layout, and short comments;
marks will not be deducted for minor syntax errors.

e The marks for each part of a question are given in brackets (...).



240-304. Mathematics for Computer Engineering Exam: 31st July 2004

Question 1 (25 minutes; 25 marks)

Use induction to show that each equation is true:

a) 1+3+..+@2n+1) = (n+1)*, whenn>=0 (12)
n
b) Z 1 (1) = (nt+1)! -1, forall positive integers (13)
i=1 .
Question 2 (25 minutes; 25 marks)

Consider the following C function:

int summer (int n)
{
int db = 0;
int i = 0;
while(i < n) {
db = db + n;

i++

d

return db;

}

The loop invariant S(k) is db, =k * n and ix =k, where db and iy are the values
of db and i after k iterations of the loop.

a) Write down a precondition and a postcondition for summer(). (8)
b) Prove that the loop invariant is correct, by induction onk. (12)

c) What is the value of db after the loop terminates? Explain your answer. (5)

Question 3 is on the Next Page



240-304. Mathematics for Computer Engineering Exam: 31st July 2004

Question 3 (40 minutes; 40 marks)
A Sierpinski Gasket is a fractal shape based around triangles.

In the first step of a gasket's creation, a triangle is drawn at the point (x,y) with a
specified width and height (see Figure 1 below). Then three smaller triangles are
drawn at its corners. The smaller triangles are width/2 wide and height/2 high. They
are labelled as (2), (3), and (4) in the figure.

he:ght
f::fst, step

@ %

(x,yﬁ width
Figure 1. First Recursive Step in Generating a Sierpinski Gasket.

The next step is to repeat the process on the three smaller triangles, producing the
triangles shown in Figure 2.

VAN L

f}/ ‘\\ //‘f \\ ;z’ x
; n I *““'“—‘“ : > y
e second step . S

‘r\ é s,\ LN Y

Figure 2. Second Step in generating a Sierpinski Gasket.

The recursive drawing continues by drawing smaller triangles inside each triangle.
Assume that you have two drawing functions available in C:

void setPen(double x, double Vy);

void drawLine (double xDistance, double yDistance);
setPen() moves the drawing pen to (x,y) without drawing anything. drawLine() draws

a line from the current pen position, moving the pen xDistance in the x- direction,
yDistance in the y- direction. The x- axis is across the screen, the y-axis is straight up.

a) Write a C function:

void drawTriangle (double x, double vy,
double width, double height);

It draws a triangie at the point (x,y) with the specified width and height. Use setPen()
and drawLine() to implement the function.
Do not implement setPen() or drawLine(). (10)

b) Write the C function:
void sierpinski (double x, double y, double width, double height);



240-304. Mathematics for Computer Engineering Exam: 31st July 2004

It uses recursion to generate the triangles making up the Sierpinski Gasket. It uses
drawTriangle() from part(a) to draw each triangle.

sierpinski() does not draw a triangle if its width or height is less than 0.2 units. (20)

c¢) Draw a simple diagram showing how sierpinski() executes when it is drawing the
first two steps in the Sierpinski Gasket. The diagram should include the memory used
by each function call. Explain the diagram in words. (10)

Question 4 (30 minutes; 30 marks)

The i" prefix average of a data[] array is the average of the first (i+1) elements of
data[]. The average is stored in the i™ cell of the prefixAvgs[] array:

prefixAvgs[i] = (data[0] + data[1] + ... + data[i]) / (it1);
A C function which fills in the prefixAvgs[] array:

void prefixAverages (int datall, int n, double prefixaAvgsI|[])

double sum;
int 1, J;

for(i=0; i < n; i++) {
sum = datal0];
for(j=1; j <= 1i; j++)
sum += datalj];
| prefixAvgs[i] = ((double) sum) / (i+l);
}

a) Work out the worst case big-oh running time for prefix Averages(). Show all your
working. (10)

b) Rewrite the prefix Averages() function to have a linear worse case big-oh running
time (i.e. O(n)). Write down the function and calculate the worst case big-oh
running time. Show all your working. (15)

c) Explain in words why the code in part (a) is slower than the version you wrote in
part (b). You should refer to the parts of prefixAverages() which cause the
slowness. (5)

--- End of Examination ---



