= a 4
UAN1INYIYTIVIUATUNT

AuzIfINTINAEAT
msaeunmama Yszdrmansanmd : 1 dszdilmsanw: 2547
Suii: 8 7.0.2547 n: 9-12.00
J1: 240-340 Compiler Structures #oe: A401

v
~ a (% 24

) :.'1 o A o =Y IS
msvﬂumsaeu Inymumﬂe i]i‘l]ﬂfﬂ‘i«!i]ﬂ?l?ﬂ‘nniﬁﬂ HAZNANMILIEH 1 SIANIANHD

o 0’J 1 = v o o v v ¥ ‘Q' o YV
A7 9 1uTazRaAvRIeTY tazAmuzIh v laneuSvoaRY
ﬁ' =} L) L} | =
PUQIN: IATOITVBUAN 1Y 110N viToAUdD
1] @ A A =
Tieyana: misde, wnaislag wazimSesdamy
1a1: 3 %2 119 (180 UIN)

¥o SN ﬁ‘ﬂﬁﬂ'ﬂ 1 Section

Notational conventions:
e non-terminal symbols of a grammar are in boldface Courier capital letters; example: TERM

e terminal symbols (tokens) are in boldface Courier lower-case letters, and are either given literally in
double quotes, or as a token name; examples: “ ! ” number “<="

e the symbols — and | mark off the parts of a production
e the symbol € represents the null or empty string of zero characters

Page 1 of 11

Computer Engineering 240-340 Midterm Examination, Term 1, 2547
Compiler Structures Prince of Songkla University, Phuket/Had Yai

1. Consider the regular expression:

(0101110*11%)
over the input alphabet = of {0,1}. Draw the state diagram of a finite state automaton made with
Thompson’s Construction from this regular expression. Show each step of the construction. Be sure to show
the € transitions properly, and to indicate starting and acceptor states.

Page 2 of 11

G OB
© Q 2l

a) Show the transition table for this FSA.

State | Input Symbol

alb|c
1
2
3
4
5
6
7
8
b) Will the input

be accepted or rejected? Show all your work, giving the input and new state for each transition.

Page 3 of 11

c¢) Will the input
abbac
be accepted or rejected? Show all your work, giving the input and new state for each transition.

d) Will the input
aacbca
be accepted or rejected? Show all your work, giving the input and new state for each transition.

e) Will the input
cababc
be accepted or rejected? Show all your work, giving the input and new state for each transition.

Page 4 of 11

3. Show regular expressions for the following descriptions. You may use concatenation, the alternation
operator |, the * operator, and parentheses.

a) An even number of zero digits, followed by exactly 3 one digits, followed by 1 or more
occurrences of a zero digit and a one digit. The input alphabet X is {0,1}.

b) At least one binary digit; then optionally both a period character and one or more additional binary
digits. The input alphabet X is {0,1}.

4. Why is the following finite state machine non-deterministic? List all the problems with it.

_staa
odo%

b)

5. Mark with “yes” or “no” whether the following productions are immediately left recursive and/or right
recursive.

left right recursive? production

recursive?
A—>Az |y
Bowx | Cx
D—->At | Bu|] uvD|ZC
E>Ar | ExrsE | ¢
F—>An| oFp | g

Page 5 of 11

6. Consider the grammar:
(1) A >As | BCt
2) Bo>oAv | BCw/| Cx
3) C>By | =z

a) Eliminate all left recursion. Show your work.

b) Left factor the resulting grammar to make it suitable for predictive parsing. Show your work.

Page 6 of 11

7. Describe the kind of information that goes in each of the 3 parts of a lex input file.

a)

b)

c)

8. The following tokens are used by a certain lexical analyzer:
e the single character punctuation marks: W, 77 ™ (/7 W) 7 W4/ W=# Wom Wi N4 WyH
e the comparison operators: “!=" “=="
the literal reserved words: “print” “while”
positive integer numbers consisting of one or more digital characters from “0” to “9”
identifiers (variable names) consisting of one or more lower case English letters “a” through “z"”

a) There are ordering restrictions in the above token set. For each such restriction, which token must
come before which other token(s)?

b) Show the contents of a C language header file that defines symbolic names for numerical token
numbers, for the above tokens. Remember that the special end-of-file token must have the value 0.

Page 7 of 11

c) Show the contents of the middle (second) part of a lex input file for processing the above tokens.

9. A certain grammar using the tokens of the previous question, with productions for lists-of-statements,
statements, booleans, conditions, prefix expressions and terms, is:

(1) L-o>sL 8) C - “==" E

@ L > ;7§ 9 € - M=rE

B) L —>e¢ (10) E —> “4” E “,”7 T
@4 S > id “=" E (1) E o “NE w7 T
(5) S - “print” E (12) E > T

6) S — “while” B “(7 L “}» (13) T — number

7 B> EC (14) T - id

a) Show the parse tree with the above grammar with the input:

size=2; while size!=0 { print size; size=-size, 1l }
Give a word description of each step in building the tree, with the input symbol(s) used up and the
node number(s) added to the tree in each step.

Page 8 of 11

b)What should the main program do to start parsing its input?

¢) If the above parser is run with this input:
a=4; b=10; while a!=0 { print +a,b; a=-a,1l; b=+10,b }
what output lines are printed?

d) Write pseudo-code for a production method that implements rules (2) and (3) of the above
grammar, like in the lab exercise. Assume that there is a global variable called next token. Show
the method signature for the C language, and the processing of terminal and non-terminal symbols; if
the method is not void, show how its return value is calculated. Refer to the token names in the
header file, not the absolute token numbers. You may use a “2” instead of the prime character in your
method name, since the prime is not legal in a C language name.

(2) L' — \\,.n S L’/

3) L' > ¢

€) Write pseudo-code as in the previous item, for a production method that implements rule (7) of the
above grammar.

(7) B > EC

Page 10 of 11

Page 11 of 11

f) Write pseudo-code as in the previous item, for a production method that implements rules (8) and
(9) of the above grammar (note: this method is really returning a boolean value).

8 C - “=='E
9 € > ™= E

g) Write pseudo-code as in the previous item, for a production method that implements rules (10)
through (12) of the above grammar.

(10) E > “47 E W , nom
(11) E > “-2“E \\’n T
(12) E > T

Page 11 of 11

