PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester I Academic year: 2004

Date: 8, August 2004 Time: 9.00 – 12.00

Subject: 230 – 425 Process Dynamics and Control Room: A 401

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

- ข้อสอบมีทั้งหมด 4 ข้อ รวม 6 หน้าไม่รวมปก และหน้าแสดงตาราง Laplace Transform and Inverse (i) ให้นักศึกษาตรวจสอบความเรียบร้อย เขียนชื่อและรหัสทุกหน้าก่อนลงมือทำข้อสอบ

- อนุญาตให้นำกระดาษจดบันทึกขนาด A4 เข้าได้ 1 แผ่นเท่านั้น

- อนุญาตให้ทำข้อสอบด้านหลังได้

ข้อ	คะแนนเต็ม
1	35
2	30
3	55
4	60
รวม	180

อาจารย์กุลชนาฐ กปิลกาญจน์ ผู้ออกข้อสอบ

Laplace Transform Table

f(t)	F(s)
t^n	$\frac{n!}{n!}$
e^{at}	$\frac{\overline{s^{n+1}}}{\frac{1}{s-a}}$
$\sin kt$	$\frac{k}{s^2 + k^2}$
$\cos kt$	$\frac{s}{s^2 + k^2}$
$e^{at}\sin kt$	$\frac{k}{(s-a)^2 + k^2}$
$e^{at}\cos kt$	$\frac{s-a}{(s-a)^2+k^2}$
$\sinh kt$	$\frac{k}{s^2 - k^2}$
$\cosh kt$	$\frac{s}{s^2 - k^2}$
1	$\frac{1}{s}$
$\delta(t-a)$	e^{-as}
$e^{at}f(t)$	F(s-a)
f'(t)	sF(s) - f(0)
$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$
$t^n f(t)$	$(-1)^n F^{(n)}(s)$
f(t+T) = f(t)	$\frac{\int_0^T e^{-st} f(t) dt}{1 - e^{-sT}}$
$f(t-a)U(t-a), a \ge 0$	$e^{-as}F(s)$
$f(t)U(t-a), a \ge 0$	$e^{-as}\mathcal{L}[f(t+a)]$
U(t-a)	$\frac{e^{-as}}{s}$
$\int_0^t f(au)d au$	$\frac{F(s)}{s}$
$f * g(t) = \int_0^t f(\tau)g(t - \tau) d\tau$	F(s)G(s)

1. [35 points] Consider exothermic reaction: A \rightarrow B in the continuous stirred tank reactor (CSTR) shown in Figure 1

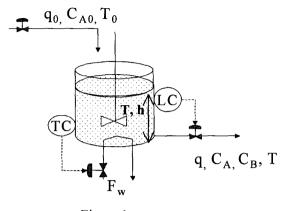


Figure 1

 q_0 = volumetric flow rate fed to the CSTR

 C_{A0} = concentration of A in the feed

 $T_0 =$ feed temperature

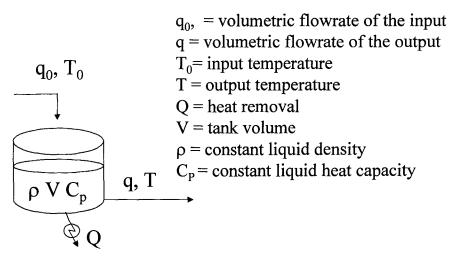
q = volumetric effluent flow

 $C_A =$ concentration of A in the effluent

 $C_B =$ concentration of B in the effluent

T = effluent temperature

 $F_w = cooling$ water flow rate

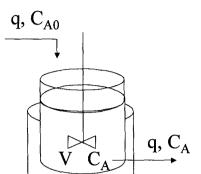

h = reactor level

a). From the figure what are disturbance(s), controlled and manipulated variable(s)?	[5]			
Disturbance(s)	-			
Controlled variable(s)	-			
Manipulated variable(s)				
b2). The control valve for cooling water F _w should be opened or closed, why?	[10]			

b3). Modify figure 1 for problem b). Sketch the control structure with feed forward and/or feed back controllers and define variables in the structure (controlled, manipulated variables and disturbance).

[10]

2. [30 points] Consider mass and energy balances in the tank


a) Derive the mass and heat balance equations

[10]

b) From the equations, Analyze the degrees of freedom. What are the following?:		[10]
- Number of the equations $N_E =$		
- parameters (constants):		
- Variables (N _V =):		
-Degrees of Freedom =		
c) From part b), is the problem can be solved? Why?	[10]	

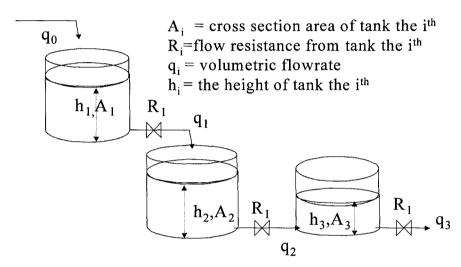
3 [55 points] Consider isothermal CSTR constant volume. IF a reaction $A \rightarrow B$ is a second order with

 $r_A = -kC_A^2$. (k is constant)

q = volumetric flow rate of the feed and effluent

 C_{A0} = concentration of A in the feed

 C_A = concentration of A in the reactor and the effluent


a) Write the component A balance

[10]

b) Linearize the equation in a) if needed and find the perturbation variable

- [15]
- c) Use the Laplace transform to find the result (final concentration of A) when C_{A0} increases 5%. [25]
- d) If using Final value theory, will you get the same solution as in c)? and Show that.
- [5]

- 4 [60 points] The liquid tank system is shown below:
- a) To simplify the model, what are the assumptions used in this model besides the given parameters? [5]
- b) What is a mathematical model for material balance of this system with your assumptions in (a). [10]
- c) Find the perturbations variables of this systems with 3 tanks [10]
- d) Find the transfer functions for the perturbation of $G1=Q_3(s)/Q_0(s)$ line $G2=H_3(s)/Q_0(s)$. If the change in $Q_0(s)$ is unit step function, what are the response and the final value of $H_3(t)$ [25]
- e) IF liquid in tank 2 and 3 are considered, what are the damping factor $G_3(s) = Q_3(s)/Q_1(s)$? [10]

Note Let q = h/R