Nama	Student ID number
name	numbel

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination Semester I

Academic year: 2004

Date: Saturday 31, 2004

Time: 9.00-12.00 am

Subject: 231-321 Chemical Engineering Kinetics

Room: R201

and Reactor Design I

Read instruction carefully before working on your exam

- All documents (i.e., text book, lecture note, home work and old exam) and calculator are allowed
- Exam paper consists of 5 problems with a total points of 100
- Do all problems in provided paper only
- Please put you name and your student ID number on every page
- The exam paper is not allowed to leave an exam room
- Please do not borrow any item from other person while taking an exam. Student are allowed to use pencil to work on the exam.

Problem	Total	Student achieved
No.	Points	Point
1	15	
2	15	
3	25	
4	20	
5	25	
Total	100	

Exam paper contains 9 pages. Please check all pages before start to work on your exam

Good luck and do your best Charun Bunyakan, Ph.D. July 27, 2004.

1. (15 points)

Liquid phase reaction

$$A + 2B \longrightarrow R + S$$

Given a dilute aqueous phase feed, $C_{A0} = 100 \text{ mol/dm}^3$, $C_{B0} = 200 \text{ mol/dm}^3$ to a CSTR. If $C_A = 20 \text{ mol/dm}^3$ at the reactor exit, What is C_B , X_A and X_B there?

Name......Student ID number.....

2. (15 points)

For a gas reaction at 400 K, the rate is reported as

$$-r_{\scriptscriptstyle A} = -\frac{dP_{\scriptscriptstyle A}}{dt} = 0.0012P_{\scriptscriptstyle A}^2 \qquad \text{atm/s}$$

- (a) What is the unit of the rate constant?
- (b) Rewrite the rate law in term of concentration (C A) and determine the value and unit of the rate constant.

Name......Student ID number....

3. (25 points)

Liquid phase reaction

$$A \longrightarrow R$$

$$-r_A = 0.3C_A^{0.5} \frac{mol}{dm^3 hr}$$

$$C_{A0} = 1.0 \frac{mol}{dm^3}$$

- (a) Determine the conversion after 1 hr in a batch reactor
- (b) Determine the conversion in 1000 dm^3 CSTR if F_{A0} = 5 $\mathrm{mol/min}$
- (c) Determine the volume of PFR to obtain the same conversion as in part (b) and $F_{\rm A0} = 5 \ \text{mol/min}$

4 (20 points)

Liquid phase elementary reaction

$$2A + B \longrightarrow 2C + D$$

is to be carried out isothermally at 100 $^{\circ}$ C in CSTR. The rate constant at this temperature is 0.02 $(dm^3/mol)^2s^{-1}$. Feed contained $C_{A0} = 5 \text{ mol/dm}^3$, $C_{B0} = 2 \text{ mol/dm}^3$ was fed to reactor at the total volumetric flow rate of 5 dm 3 /s.

- (a) Express C_A , C_B , C_C and C_D as function of X_A
- (b) Determine the volume of CSTR to achieve ${\rm X}_{\rm A}$ of 0.6
- (c) Can we determine the C_B at X_A =0.9? If not, give the reason and determine what is the maximum conversion of A that we can possibly be obtained.

Name......Student ID number.....

5. (25 points)

The kinetics data for the decomposition of gas A are given below.

$$4A(g) \longrightarrow B(g) + 6C(g)$$
 at 500°C: $-r_A = 10(hr^{-1})C_A$

at 800°C:
$$-r_A = 14(hr^{-1})C_A$$

Determine the size of PFR operating at 650 °C and 11.4 atm for 75% conversion of 10 mol/hr of feed contained 75%A and 25% inert gas.