PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester I Academic Year: 2004

Date: October 1, 2004 Time: 9:00-12:00

Subject: 230-620 Advanced Engineering Room: R300

Kinetics and Chemical Reactor Design

- อนุญาตให้นำเอกสารและเครื่องคำนวณทุกชนิดเข้าห้องสอบได้

- ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริตและพักการศึกษา 1 ภาคการศึกษา

Part I
Please do all 2 questions. Show all your work to receive full or partial credit.
Total score is 50.

Question #	Total Score	Score	
1	20		
2	30		
Total	50		

สุกฤทธิรา (บุญเรื่อง) รัตนวิไล

- The catalytic reaction A→B takes place within a fixed bed containing spherical porous catalyst. Figure 1 shows the overall rates of reaction at a point in the reactor as a function of temperature for various entering total molar flow rates, F_{TO}. (20 points)
 - a. Is the reaction limited by external diffusion?
 - b. If your answer to part (a) is "yes" under what conditions (T, F_{T0}) is the reaction limited by external diffusion?
 - c. Is the reaction 'reaction rate limited'?
 - d. If your answer to part (c) is "yes" under what conditions (T, F_{T0}) is the reaction limited by the rate of surface reactions?
 - e. Is the reaction limited by internal diffusion?
 - f. If your answer to part (e) is "yes" under what conditions (T, F_{τ_0}) is the reaction limited by the rate of internal diffusion?
 - g. For a flow rate of 10 g mole/h, determine the overall effectiveness factor, Ω , at 360 K.
 - h. Estimate the internal effectiveness factor, η , at 360 K

 A second order, gas phase reaction 2A → P occurs in a catalyst pellet with rate coefficient and constant parameters; (30 points)

a. Estimate the effective diffusivity if

$$D_k = 9.7 \times 10^3 (r_p) T^{1/2} M_A^{-1/2}$$
 cm²/s
 $r_p =$ mean pore radius, cm
T temperature, K

- b. Determine if there are pore diffusion limitations.
- c. If part (b) shows pore diffusion limitations, what can be done to eliminate them? Prove, with quantitative calculations that you have eliminated them?

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination Semester I

Date: October 1, 2004

Subject: 230-620 Advance Engineering Kinetics

and Chemical Reactor Design I

Academic year: 2004 Time: 9.00-12.00 am

Room: R300

ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริตและพักการศึกษา 1 ภาคการศึกษา

Part II. Non-isothermal Reactor Design

Read instruction carefully before working on your exam

- All documents (i.e., text book, lecture note, home work and old exam) and calculator are allowed
- Exam paper consists of 2 problems with a total points of 80
- Do all problems in provided answer book USE YELLOW ANSWER BOOK FOR PART II
- Show all your work to receive full or partial crdit
- The exam paper are not allow to leave the exam room

Problem No.	Total Points	Student achieved Point
1	30	
2	50	
Total	80	

1. (30 points)

The endothermic liquid phase reaction

$$A+B\longrightarrow 2C$$

is carried out to complete conversion in a CSTR with a steam jacket. From the following data, calculate the steady state reactor temperature:

Data: Reactor volume: 125 gal

Steam jacket area: 10 ft² Steam temperature: 365.9 °F

Overall heat-transfer coefficient of jacket, U: 150 Btu/h ft² °F

Agitator shaft horsepower: 25 hp (= 63,525 Btu/hr)

Heat of Reaction ΔH_R (independent of temperature)= +20,000 Btu/lbmol of A

Other data

	Component			
	A	В	C	
Feed (lbmol/hr)	10	10	0	
Feed temperature (°F)	80	80	-	
Specific heat (Btu/ lbmol °F) independent of	51	44	47.5	
temperature				
Molecular weight	128	94	-	
Density (lb/ft ³)	63	67.2	65	

2. (50 points)

The elementary irreversible organic liquid phase reaction

$$A + B \rightarrow C$$

is carried out adiabatically in a flow reactor. An equal molar feed in A and B enters at 27 °C, and the volumetric flow rate is 2 dm³/s. The concentration of A in feed is 0.1 kmol/m³. The additional information are given below:

$$H_A^o(298) = -20 \, kcal \, / \, mol$$
 $H_B^o(298) = -15 \, kcal \, / \, mol$
 $H_C^o(298) = -41 \, kcal \, / \, mol$
 $C_{PA} = C_{PB} = 15 \, cal \, / \, mol \, K \, \star$
 $C_{PC} = 30 \, cal \, / \, mol \, K \, \star$
 $\star \, independent \, of \, temperature$
 $k = 0.01 \, \frac{dm^3}{mol \, s} \, at \, 300 \, K \, , \, E = 10,000 \, cal \, / \, mol$

- a) Calculate the CSTR volume necessary to achieve 85% conversion
- b) Calculate the PFR volume necessary to achieve 85% conversion

Good luck and do your best Charun Bunyakan September 27, 2004