do	รหัส
ьо	

หน้า 1 จาก 6

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1 วันที่ 1 ตุลาคม พ.ศ. 2547

วิชา 216-323 : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา 2547 เวลา 9.00-12.00 น.

ห้อง R300

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำลงในข้อสอบทุกข้อ และทุกข้อมีคะแนนเท่ากัน
- 2. อนุญาตให้ใช้เครื่องคิดเลขได้
- 3. ให้ใช้เครื่องมือเขียนแบบได้
- 4. ให้นำตำราเรียนประจำวิชา และพจนานุกรมอังกฤษไทย เข้าห้องสอบได้ แต่ไม่อนุญาตเอกสารอื่น ๆ

ผศ.ดร. วรวุธ วิสุทธิ์เมธางกูร อ. ประกิต หงษ์หิรัญเรื่อง ผู้ออกข้อสอบ 1. The following data is given for the mechanism shown in the figure: $R_{O_2O_4}=3$ in; $R_{O_2A_2}=3$ in; and at this instant $R_{O_4A_4}=3$ in; $\omega_2=4$ rad/s ccw; $\omega_4=8$ rad/s² ccw. Determine (a) ω_4 , (b) α_2 .

2. Link 2 of the slider crank mechanism shown is applied with a horizontal force $F_B = 500$ N to the right. If there is no friction, find the force P such that the mechanism is in static equilibrium. $R_{AO_2} = 400$ mm, $R_{BO_2} = 200$ mm, and $R_{AC} = 400$ mm.

3. Link 3 has the accelerations of its end points, A and B, as shown. $R_{AB}=500$ mm, $R_{AG}=250$ mm, $m_3=2$ kg, and $I_G=0.05$ kg-m². Determine (a) a_G , (b) CC_3 , and (c) the inertia force and its location according to D'Alambert's principle.

4. Link 3 of the mechanism shown has the following data; $m_3=1\ kg,\ I_G=0.04\ kg\text{-m}^2,\ R_{AB}=400\ mm,\ R_{AG}=200$ mm. If point B is moving with constant velocities, $v_B=4\ m/s$ to the left. Assume no friction. Determine (a) Ω_3 , (b) Ω_3 , and (c) force P applied to B to cause this motion.

5. For the rotor shown, a = 50 mm, b = 100 mm, c = 200 mm, $m_1 = 2.7$ kg, $R_1 = 40$ mm, $m_2 = 1.2$ kg, $R_2 = 60$ mm. To balance this rotor, determine the amount and angular positions of the masses to be added on the correction planes, L and R, at the radius $R_L = R_R = 80$ mm.

