ત	est of
"D	iอรหัสรหัส

ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

ข้อสอบกลางภาค : ภาคการศึกษาที่ 2

ปีการศึกษา 2547

วันสอบ : 21 ธันวาคม 2547

เวลา : 9.00 - 12.00 น.

วิชา : Basic Chemical Engineering II (230-392)

ห้องสอบ : A 400

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

อนุญาตให้นำ ตำรา เอกสาร เครื่องคำนวณเข้าห้องสอบได้ ให้นักศึกษาตรวจสอบความเรียบร้อย และเขียนชื่อและรหัสก่อนลงมือทำข้อสอบ ข้อสอบมีทั้งหมด 5 ข้อ รวม 7 หน้า ทุกข้อมีคะแนนเท่ากัน ให้ทำในข้อสอบ และถ้าไม่พอให้ทำด้านหลังกระดาษได้

ข้อ	คะแนนเต็ม	คะแนนที่ได้
1	20	
2	20	
3	20	
4	20	
5	20	
มวท	100	

อาจารย์กัลยา ศรีสุวรรณ ผู้ออกข้อสอบ ชื่อ......วหัส......

A composite wall consisting of three different layers in perfect thermal contact is shown in the sketch below. The outer surfaces to the left and right are kept at temperatures T₁ = 400°C and T₂ = 50°C, respectively. The thickness L_i and the thermal conductivity k_i for i = 1, 2, 3 of each layer are also specified. Determine the heat transfer rate per square meter across this composite layer by assuming one-dimensional heat flow and using the thermal resistance concept.

4	
J	ioรหัสรหัส

2. Atmospheric air at 20°C flows with a velocity of 2 m/s over the 3 m by 3 m surface of wall which absorbs the solar energy flux at a rate of 500 W/m² and dissipates heat by convection into the airstream. Assuming that the other surface of the wall has negligible heat loss, determine the average temperature of the wall under equilibrium conditions.

اء	· · · · · · · · · · · · · · · · · · ·
ปีใ	วรหัส

- 3. Copper-plate fin of rectangular cross section having thickness t=1 mm, height L=10 mm, and thermal conductivity k=380 W/(m. $^{\circ}$ C) is attached to a plane wall—maintained at a temperature $T_0=230^{\circ}$ C. Fin dissipates heat by convection into ambient air at $T=30^{\circ}$ C with a heat transfer coefficient h=40 W/(m^2 . $^{\circ}$ C). Assume negligible heat loss from the fin tip.
 - (a) Determine the fin efficiency.
 - (b) Determine the net rate of heat transfer per square meter of plane wall surface.
 - (c) What would be the heat transfer rate from the plane wall if there were no fins attached?

4	.
a	ขรหัส
ш	· 🖺

4. A composite wall consists of a 10-cm-thick layer of building brick of thermal conductivity $k = 0.7 \text{ W/(m.}^{\circ}\text{C})$ and 3-cm-thick plaster of thermal conductivity $k = 0.5 \text{ W/(m.}^{\circ}\text{C})$. An insulating material of thermal conductivity k = 0.08 is to be added to reduce the heat transfer through the wall by 70 percent. Determine the thickness of the insulating layer.

ลี	ชื่อรหัส
-	######################################

5. A conductor with D = 0.8 cm diameter carrying an electric current passes through an ambient at $T_{\infty} = 30^{\circ}\text{C}$ with a convection heat transfer coefficient h = 120 W/(m². $^{\circ}\text{C}$). The temperature of the conductor is to be maintained at $T_i = 130^{\circ}\text{C}$. Calculate the rate of heat loss per 1-m length of the conductor for (a) the conductor bare and (b) the conductor covered with Bakelite [k = 1.2 W/(m. $^{\circ}\text{C}$)] with radius corresponding to the critical radius of the insulator.