PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester II

Date: 26, December 2004

Subject: 230 – 591 Special Topics in Chem. Eng I

(Computational Methods in Chem. Eng)

Academic year: 2004 Time: 9.00-12.00

1 IIIIe: 9.00-12.00

Room: R 300

ทุจริตในการสอบ โทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

- Only hand written note in 1 A4 is allowed
- There are 5 pages of the exam not include the cover page
- Identify each page with your name or at least your code
- If need to write the answers at the back of each page, please identify the problem number
- Writing clearly and concisely will be your advantage. Explanation of your answer is required.

Name	code

Problem Number	Score
1	30
2	30
3	30
4	30
5	30
Total	150

Dr. Kulchanat Kapilakarn

1 [30 points] The following three reactions occur in a coal gasifyer

$$H_2 + 0.5 O_2 \rightarrow H_2O$$

$$K1 = \frac{(1+e1)(n_{total} - 0.5e1 + 0.5)^{0.5}}{(2-0.5e1 - 0.5e2 - e3)^{0.5}(0.38 - e1)P^{0.5}}$$

$$C+0.5 O_2 \rightarrow CO$$

$$K2 = \frac{e2P^{0.5}}{(2 - 0.5e1 - 0.5e2 - e3)^{0.5}(n_{total} - 0.5e1 + 0.5)^{0.5}}$$

$$C+O_2 \rightarrow CO_2$$

$$K3 = \frac{e3}{(2 - 0.5e1 - 0.5e2 - e3)^{0.5}}$$

- e1, e2, and e3 represent the number of moles of H₂ used in reactions 1, 2 and 3, respectively.
- 1.1 Set up the equations of f1(e1,e2,e3), f2(e1,e2,e3) and f3(e1,e2,e3) used in Newton-Raphson method.
- 1.2 Show algorithm of solving e1, e2 and e3 by Newton-Raphson method.

N.T.	0.1
Name	Code

2 [30 points] The outflow chemical from completely mixed reactor is measured as

t, min	0	2	4	6	8	12	16	20
C, mg/m ³	0	20	30	40	60	72	70	50

For an outflow of $Q = 12 \text{ m}^3/\text{min}$, you can estimate the mass of chemical that exits the reactor from t = 0 to t = 20.

- 2.1 Write the formula and algorithm of using trapezoidal rule to estimate the mass.
- 2.2 Can we use Simpson's 1/3 rule to estimate the mass and why?
- 2.3 Write formula and algorithm of using Simpson's 1/3. If your answer in (2.2) is "No", what are your assumptions to solve the problem?

Name			Code	

3 [30 points] The modified Euler method can be written in Runge-Kutta format as:

$$k_1 = f(y_i, t_i)h$$

$$k_2 = f(y_i + k_1, t_i + h)h$$

$$y_{i+1} = y_i + (k_1 + k_2)/2$$

If
$$dy/dt = f(y,t) = -\lambda y$$

 $y(0) = y_0 \lambda$ is a positive constant

- 3.1 Write out equation (a) for equation (b) with the step size h.
- 3.2 What is the approximate maximum integration step h that you could use with the Euler method to maintain a stable solution?

- 4 [30 points] Consider $dy/dt = f(y,t) = -\lambda \sin y + e^{-t}$, $y(0) = y_0$ (c)
- 4.1 Apply the implicit Euler method, $y_{i+1} = y_i + dy_{i+1} / dt * h$ to equation (c).
- 4.2 Use Euler to estimate y_{i+1} and calculate y_{i+1} from (4.1).
- 4.3 Write algorithm to solve this problem.

Midterm	230-591	T
MIGHT	430-331	_1

Name Code

5 [30 points] Using the shooting method and modify Euler integration to solve $a\frac{d^2y}{dx^2} - b\frac{dy}{dx} - y + x = 0$ when coefficients **a** and **b** are positive real numbers. The boundary condition for the equation are $y(0) = y_0$ and $y(20) = y_{20}$. Write the algorithm to solve the problem.