

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบกลางภาค ภาคการศึกษาที่ 2 วันที่ 23 ธันวาคม 2547 วิชา 216-462 พลังงานทดแทน (Renewable Energy) ประจำปีการศึกษา **2547** เวลา 9:00-12:00 ห้อง A401

คำสั่ง

- 1. ข้อสอบมีทั้งหมด 8 ข้อ ให้ทำข้อ 1-6 ส่วนข้อ 7 ข้อ 8 ให้เลือกทำข้อใดข้อหนึ่งเพียงข้อเดียว โดยแสดงวิธีทำและอธิบายให้ชัดเจน (เนื้อที่ไม่พอให้ต่อด้านหลัง)
- 2. อนุญาตให้นำเอกสาร, Lecture note และหนังสือเข้าห้องสอบได้
- 3. ให้นำเครื่องคิดเลขเข้าห้องสอบได้
- 4. อนุญาตให้เขียนด้วยดินสอ

คำเตือน ทุจริตในการสอบ โทษขั้นต่ำ คือ พักการ เรียนและปรับตกในรายวิชาที่ทุจริต

> อ.ฐานันดร์ศักดิ์ เทพญา ผู้ออกข้อสอบ

คะแนนเต็ม	คะแนนที่ได้
10	
15	
15	
10	
15	
20	N N
20	
20	
105 (35%)	
	10 15 15 10 15 20 20

* เลือกทำข้อใดข้อหนึ่ง

d	ચ ∀ ≪ી
ชิอ-สเ	วุลรหัสนักศึกษารหัสนักศึกษา

1. Describe the meaning of renewable energy and give examples of renewable energy applications briefly. (10 points)

ď	d .	ν ν ≪
١	ห้อ-สกอ	รหิสนิกศึกษารหิสนักศึกษา
-	no en 14 en	

2. Calculate the solar time at Bangkok latitude on December 20, 2004 when the standard time is 13:30 h also determine the sunset hour angle and sunlight hour (day length). (15 points)

d	w w eq
ชิอ-สกุ	ลรหัสนักศักษา

3. Explain the changes of season by based on the geometry of Earth's yearly orbit about the Sun relative to the Earth's daily rotation. (15 points)

di	യ യ ≪ി
ชอ-สฤ	าลรห้สนักศึกษารห้สนักศึกษา

4. How to determine the solar radiation fluxes on the Earth's surface? (Describe the instrumentations and methods) (10 points)

4	૫ ૫ વ
ช่อ-สกุล	รหัสนักศึกษา

5. On December 20, 2004 at 13:30 h, determine the solar altitude angle (α_s) and the incidence angle (θ) of a beam solar radiation on a flat-plate solar collector which have 15° of tilt angle aligned on the South-North plane and deviated from the South about 5°. The flat-plate solar collector was installed at Bangkok latitude. (15 points)

(Also draw the direction of beam incidence angle on an inclined plate.)

4	ഴ ഴ പ്
ช่อ-สกุ	ลรหิสนักศึกษารหิสนักศึกษา

6. Determine the instant beam irradiance (I_b), the diffuse irradiance (I_d) and the heat absorbed (q_{abs}) by a non-selective black plate of a horizontal solar collector with single glass cover. The solar altitude angle at instant is 60° . Use the data from "Solar and Atmospheric Radiation" by R.H.B. Exell, (1979). Given ; the water vapor content, w = 2.0 cm, tubidity (B) = 0.15 and albedo = 0.2. (20 points)

นี่อ-สกล	รหัสนักศึกษารหัสนักศึกษา
- ให้เลือกทำข้อ 7 หรือ 8)	

7. The flat-plate solar collector with width 2 m and length 4 m has an absorbed radiation per unit area of 450 W/m 2 . The receiver is a cylinder painted flat black has a diameter of 50 mm. The collector is designed to heat a fluid entering the absorber at 70° C at a flow rate of 0.05 kg/s. The fluid has $C_p = 4.18$ kJ/kg $^{\circ}$ C. The heat transfer coefficient inside the tube is 270 W/m 2 $^{\circ}$ C and the overall loss coefficient is 8.5 W/m 2 $^{\circ}$ C. The tube is made of stainless steel (k = 16 W/m $^{\circ}$ C) with wall thickness of 3 mm. If the ambient temperature is 30° C, calculate the useful gain and the exit fluid temperature. (20 points)

ชื่อ-สกุล	รหัสนักศึกษารหัสนักศึกษา
ให้เลือกทำข้อ 7 หรือ 8)	

8. Explain clearly, how to design a good flat-plate solar collector for water heating? Why we do not need the concentrating solar collector for domestic water heating? (20 points)