Examination : Final Examination Academic year : 2004 Date: 24 Feb 2005 Time: 13:30 - 16:30 Subject: 240-361 Introduction to Queueing Theory Room: R200 ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียนหนึ่งภาคการศึกษา ## **NOTE** - There are 4 questions, 8 pages (not include cover). Answer all questions. - All questions are different marks. - Calculator, textbooks and hand-out are prohibited. - Each answer must be clear and show how to get the answer. | Student ID:Name: | Section : | |------------------|-----------| |------------------|-----------| | Question | 1 | 2 | 3 | 4 | Total | |----------|---|---|---|---|-------| | Marks | - | | | | | | Stu | ident ID: | Name : | Section : | |-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------| | | | | | | 1. | Consider a pa | cket stream whereby packets arrive acc | cording to Poisson process with rate 10 | | | packets/sec. I | f the interarrival time between any two | packets is less than the transmission | | | time of the fir | rst to arrive, the two packets are said to | collide. Assuming the link capacity is | | | | =10 Mbps and packet length is 10 Kb | | | | | ide with either its predecessor or its s | - | | | | nother packet? | (10 marks) | | Δ. | | | | | Α. | 13WCI | | | | | | | | | | | | | | | | | | | | ······································ | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | _ | | | | | , | ************************************** | | | | | | | | | | MANAGEMENT OF THE PROPERTY | | | | , | | | | | | | | | | | | | | | *************************************** | | | | | | | | | | | | | | | | | | | | | | | | | | ### | | | | _ | | | | | | | | | | | | | | | | | | | | stu | ident ID: Name: Se | ection: | |-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2. | A communication line capable of transmitting at a rate of 60 Kbits/sec will accommodate 10 sessions. Each session generates Poisson traffic. For the case of the capable of transmitting at a rate of 60 Kbits/sec will accommodate 10 sessions. | se where five | | | of the sessions transmit at a rate of 300 packets/min while the other five tran of 60 packets/min. Packet lengths are exponentially distributed with mean 10 | | | | the average number of packets in queue, the average number in the syst | tem, and the | | | average delay per packet when the line is allocated to the sessions by using (a) 10 equal-capacity time-division multiplexed channels. | (18 marks) | | Ar | nswer | (10 marks) | | | | | | | | , | | | | Zin and a same and a same and a same and a same | | | | | | | | *************************************** | | ···· | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - THE STATE OF | | | | | | | | Marine and a state of the | | *************************************** | | | | | | | | Student ID | : Name : | Section : | |-------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | (b) | Statistical multiplexing. | (10 marks) | | (0) | Statistical multiplexing. | (10 marks) | | Answer | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | and the second s | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | and the state of t | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Stı | ıdent ID : | Name: | | Section : | |-----|-------------------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | 3. | In M/M/2 queue | ing system, derive the follo | owing in term of μ and λ | | | | (a) P _n | | | (5 marks) | | Aı | nswer | | | | | | | | | | | | ۱۹۰۰ میلیان پر در | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | uppermitter and permitter and an arrangement of the second and arrangement of the second o | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | and the second s | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AND THE RESIDENCE OF THE PROPERTY PROPE | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | Student ID: | Name: | Section : | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------| | | | | | (b) N: average | ge number of packets in the system | (5 marks) | | Answer | | | | | | | | | | | | | | | | | | | | and the second s | | | | And the second s | | | | | | | | | | | | | | | | A SHEET, ASSESSMENT OF THE O | | | | 4441 | | | | | | | | PROMPTO OF STREET, STR | | | | THE RESERVE THE PROPERTY OF TH | | | | Anna Anna Anna Anna Anna Anna Anna Anna | | | | | | | | | | | | | | | | سياهي والمستقدم والمستقدم والمستقدم والمستقدم والمستقدم والمستقد والمستقدم والمستوم والمستقدم والمستقدم والمستقدم والمستقدم والمستقدم والمستقدم وا | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Student ID: | Name: | Section : | |-----------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | (a) T · overo | ge waiting time in the system | (2 marks) | | (c) 1 averag | ge waiting time in the system | (2 marks) | | Answer | | | | Allswei | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | | | | | | *************************************** | | The state of s | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <u>Stude</u> | nt ID: Name: | Section: | |--------------|--------------------------------------------------------------------------------------|--------------------------------| | | | | | 4 | An M/M/1 queueing system in which the total number of jobs is limited | \mathbf{d} to K owing to a | | li | mitation on queue size. Given $P_n = \frac{1-\rho}{1-\rho^{K+1}} \cdot \rho^n$ | | | | (a) Find the steady-state probability that the processor is idle. | (2 marks) | | Ans | wer | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (b) Find the steady state probability that an arriving request is rejequeue is full. | ected because the (2 marks) | | Ans | • | (2 mans) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | tudent ID | : Name : | Section : | |-----------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | (c) | Find the throughput of the system in the steady state. | (3 marks) | | nswer | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | W | | | | - | | | | | | | | | | | | | | en magniti suuri en | | | | | | | system for the 90th percentile? | (5 marks) | | \nswer_ | | | | | | | | | | | | | | | | | | | | | | | | | | And the second s | | | | | | | | | | | | | | | | | | V-1000000000000000000000000000000000000 | | | | | | | | | | | | | | | | | | |