PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination : Semester 2 Academic Year : 2004

Date: March 4, 2005 Time: 09.00-12.00

Subject: 226-318 INDUSTRIAL CERAMICS Room: R300

ทุจริตในการสอบโทษขั้นต่ำ คือ ปรับตกในรายวิชาที่ทุจริต และ พักการเรียน 1 ภาคการศึกษา

Instruction:

- 1. Do all of 21 problems.
- 2. The score appears at the end of each problem.
- 3. Total score is 102.
- 4. Notes, books and calculator are allowed.
- 5. Your choices are on page 4-7.
- 6. Write the answers on page 8.
- 7. Each answer of the problem no.1-18 must be in the form of and the rest has to be done on page 8.

ผศ.เสน่ห์ ธัญธาดาลักษณ์ ผู้ออกข้อสอบ

Supopo

1.	How could the refractoriness of ceramics be found?(4)
2.	What is chamotte?(4)
3.	What do you know about spalling resistance?(4)
4.	Tell me 2 ceramic materials of high thermal shock resistance?(4)
5.	There are 2 fire bricks (A and B). The bulk density of A is more than B. They are
	made of same material. What are the differences of thermal conductivity and
	strength?(4)
6.	How do you make an insulating firebrick?(4)
7.	How do you make air setting-refractory mortar?(4)
8.	What is refrax?(4)
9.	What do you know about tunnel kiln?(4)
10.	What is the important difference between metal and ceramics in case of heating
	element?(4)
11.	Why is the temperature difference of work piece and heating element in normal
	electric furnace less than in vacumm furnace?(4)
12.	Why should gas burner be used instead of oil burner to produce stoneware
	glaze?(4)
13.	How many types of atmosphere does occur during glost firing?(4)
14.	What colors could glaze formula which comprises CuO as one of counstituents
	be after glost firing?(4)
15.	Why have we to build chimney for gas-fired kiln?(4)
16.	How many kinds of the furniture material could be used in the kiln? What are
	they?(4)
17.	How do you measure the kiln temperature during high firing?(4)
18.	How do you produce earthenware glaze?(4)
19.	Given LPG of 11000 kcal./kg., 200 lbs of silica chamotte, 15% of net efficiency
	and 1200-1300°C within one hour.
	(a) Find energy consumption in Kcal(10)
	(b) How many kgs/hr of LPG should be?(5)

Portage

20. Given the molecular formula of glaze as follow:

0.2 Mgo

0.2 Cao 0.4 Al₂O₃

3.5 Si O₂

0.3 BaO

0.5 B₂O₃

AK₂O

Find A.....(5)

21.

Raw Material	Molecular	Molecular	Batch
	Eqerivalent	Weight	Wight
CaCO ₃	X	Υ	Z
MgCO ₃	.1135	84	9.53
B-Feldspar	.1291	596	76.94
Kaolin	.1615	258	59.13
Flint	1.076	60	93.44

The total batch weight is 314.76. M.W. of $CaCO_3$ is 100.

Find X.....(10)

Jupy

The metal is serviced at higher temperature.	=	0	N	Ε
The metal is serviced at lower temperature.	=	N	0	Ш
The metal is serviced for longer time.	=	Е	0	Ν
The metal is serviced for shorter time.	=	0	Е	Ν
Green and red.	=	4	X	Υ
Blue, green and red.	=	Χ	4	Υ
White and blue.		Υ	4	Х
Yellow, blue and red.	=	Χ	Υ	4
Oil burner is more efficient.	=	2	К	W
Gas burner is more efficient.	=	K	W	2
Gas burner provides better quality of product.	=	K	2	W
Gas burner is cheaper.	=	W	К	2
The chimney provides better quality of fired product.	=	5	Х	0
The chimney provides better firing.	=	0	Х	5
Gas fired kiln provides burned gases which must be exhausted.		Х	5	0
Refractory clay and carbofax	=	6	М	К
Refractory clay and refrax.		К	М	6
High alumina clay and mortar.	=	К	6	М
Pure oxide and refrax.	=	М	6	К
Using thermocouple and cone.	=	7	Х	Y
Using temperature controller.	=	Х	Y	7
Using infared thermometer.	=	Х	7	Y

Using thermocouple and pyrometric cone.

July Pr

Χ

			1	
Fired-clay body.	=	2	Α	В
Fired-SiC body.	=	Α	В	2
Fired-brick.	=	В	2	Α
Fired-Glaze.	=	2	В	Α
C and SiO ₂ .	=	4	В	С
Clay and diamond.	=	В	С	4
SiC and Si ₃ N ₄ .	=	С	В	4
Clay and talc.	=	В	4	С
Thermal conductivity of A is lower but the strength is higher than B.	=	5	С	D
Thermal conductivity of A is higher but the strength is lower than B.	=	С	D	5
Both properties of A is lower.	=	С	5	D
Both properties of A is higher.	=	D	С	5
Lligh fixing of refrectors alove and SiO			T	
High firing of refractory clay and SiO ₂ .		7	7	В
High firing of clay and burned MgCO ₃ .	<u>=</u>	A	7	В
Mixing refractory clay and burned ceramics. Mixing codium silicate and calcinated refractory clay.	=	В	В	A 7
Mixing sodium silicate and calcinated-refractory clay.	=	A	D	7
The kiln is continuously run ceramicwares production.	=	9	Α	G
The kiln is periodically run ceramicwares production.	=	Α	G	9
The longly straight kiln is continuously run ceramicwares production.	=	G	9	Α
The longly straight kiln is periodically run ceramicwares production.	=	G	Α	9
High carbon product.	_	8	D	E
Clay-graphite product.		D	E	8
Carborundum product of 95% SiC or higher.	=	8	E	D
One of carborundum products.	=	D	8	E
No.			1	

Spipe

The vacuum furnace is more efficient.	=	Η	В	1
The heating element of the normal one is lower efficient.	=	В	Н	1
The heating element of the vacuum one is operated at very high temperature.	=	1	В	Н
The heat transfer of the normal one is higher.	=	В	1	Н

To fire the specimen reaching the temperature at which the moment of sagging			-	
occurs and the apex falls down the level of the base.	=	1	G	D
To fire the specimen reaching the temperature at which the moment of melting	=	G	1	D
occurs.				
To fire the specimen reaching the temperature at which the sintering occurs.	=	D	G	1
To fire the specimen reaching the temperature at which the failure occurs.	=	G	D	1

The ability of a refractory material to resist repeated temperature variation				
without being destroyed.	=	3	K	F
The ability of a refractory material to resist thermal shock without being	·			
destroyed.	=	К	3	F
The ability of a refractory material to resist very high temperature for long time				
without melting.	=	F	κ	3
The ability of a refractory material to resist the temperature at which is higher				
than 1000°C.	=	3	F	K

Firing refractory clay at 1400°C.	=	6	В	J
Firing the mixture of fireclay, calcinated refractory clay and combustible				
additives at 1400°C.		В	6	J
Firing the mixture of fireclay and combustible additives	=			
at 1400°C.		J	В	6
Firing the mixture of fireclay and calcinated refractory clay				
at 1400°C.	=	6	J	В

Jur. or

3	=	3	D	В
2	=	D	3	В
1	=	D	В	3
0	=	В	D	3

Firing the mixture of high lead compound and stoneware glaze batch at 1200°C				
or lower.	=	8	Y	×
Firing the mixture of high lead and boron compounds with stoneware glaze				
batch at 1100°C or lower.	=	8	X	Y
Firing the mixture of high boron compound and stoneware glaze batch at				
1000°C or lower.	_	X	8	Y
Firing the mixture of the mixture of high lead compound and stoneware glaze				
batch at 900°C or lower.	<u>-</u>	Y	X	8

Jan Roll