Name Stude	nt ID
------------	-------

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination Semester I

Academic year: 2005

Date: August 2, 2005

Time: 9.00 - 12.00 น.

Subject : 230 - 313 Heat Transfer

Room: R 300

1) All notes and books are allowed.

2) There are total 5 questions.

Question	Points value	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Name Student ID.......

1. A steam pipe of outside radius $r_1 = 4$ cm is covered with a layer of asbestos cement of thickness $L_1 = 2$ cm and thermal conductivity $k_1 = 0.2$ W/(m.°C) which is covered in turn with a glass wool of thickness $L_2 = 5$ cm and thermal conductivity $k_2 = 0.04$ W/(m.°C) If the temperature of the outer surface of the pipe is $T_1 = 300$ °C and that of the outer surface of the glass wool is 30 °C, determine the heat loss per 1-m length of pipe. Assume one-dimensional heat flow, and use the thermal resistance concept. Also give the overall heat transfer coefficient U_0 based on the outside surface of the insulation.

Name Student ID......

- 2. Copper-plate fins of rectangular cross section having thickness t=1 mm, height L = 10 mm, and thermal conductivity k=380 W/(m.°C) are attached to a plane wall maintained at a temperature $T_0=235$ °C. Fins dissipate heat by convection into ambient air at T=35 °C with a heat transfer coefficient h=40 W/(m².°C). Fins are spaced at 10 mm (that is, 100 fins per meter). Assume negligible heat loss from the fin tip.
 - (a) Determine the fin efficiency.
 - (b) Determine the net rate of heat transfer per square meter of plane wall surface.
- (c) What would be the heat transfer rate from the plane wall if there were no fins attached?

Name Student ID......

3. Thermal conductivity of a plane wall varies with temperature according to the relation

$$k(T) = k_0(1 + \beta T)$$

where k_0 and β are constants.

- (a) Develop an expression for the heat flow through the slab per unit area if the surfaces at x=0 and x=L are maintained at uniform temperatures T_1 and T_2 , respectively.
- (b) Develop a relationship for the thermal resistance of the wall if the heat transfer surface is A.
- (c) Calculate the heat transfer rate through A = 0.1 m² of the plate for T_1 = 200 °C T_2 = 0 °C , L = 0.4 m, k_0 = 60 W/(m. °C), and β = 0.25 x 10^{-4} °C⁻¹.

Name Stude

4. Water at 20°C is to be heated in a 3 mm- ID tube until the exit temperature reaches 30 °C. The wall temperature is maintained at 50 °C and the inlet flow velocity is 0.4 m/s. Calculate the length of the tube required in meters to accomplish this heating. Also calculate the total heating required, express in watts.

Name	C+I + 1D
Name	STUDENTILL
· NOTITO	Oludon D

5. Air at 25 °C flows at a speed, $U_{\infty}=1$ m/s over a 20-cm-square plate upon which is imposed a constant heat flux of 20 W/ m². Determine (a) the average temperature difference, (b) the temperature difference at the trailing edge, and (c) the average heat-transfer coefficient.