PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination : Semester I Academic Year : 2005

Date: 7 August 2005 Time: 09.00 — 12.00

Subject : 230 - 531 Membrane Separation Processes Room : R 300

Student Name: ID no. :

Number of questions: 4

Time: 3 hours

Total marks: 100

Calculators are allowed.

Books and notes are allowed.

Question	Full Marks	Marks Received
1	30	
2	25	
3	20	
4	25	
Total	100	

ทุจริตในการสอบโทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Studer	nt Name: ID No.:			
1) a)	What is a composite membrane? Explain with help of a microscopic structure.	sketch of	the membrai	ne
		((5 marks)	
b) Please describe how to construct a spiral-wound module.	Explain the	e flow directi	on
	of all streams through this type of membrane module.			
		((5 marks)	
С) What are the advantages and disadvantages of	ceramic r	membranes	in
	comparison to polymeric membranes?			
		((5 marks)	
d	I) Provide a sketch of a ceramic membrane module. She	ow stream	flow paths	in
	ultrafiltration. Give some details on pore sizes and materia	ls of const	ruction.	
		((5 marks)	
е	e) Briefly explain transport mechanisms of pervaporation for a	a silicone r	membrane.	
		((5 marks)	
f)	Fuel cell vehicles are expected to offer an extremely of	quiet ride,	improved fu	ıel
	economy and zero emissions. Briefly describe the base	sic princip	ole of fuel c	ell

operation.

(5 marks)

Student Name:		ID No.:
---------------	--	---------

2) It is desired to determine the membrane area needed to separate an air stream using a membrane thickness t =2.54 x 10^{-3} cm. with an oxygen permeability of $P_A'' = 500 \times 10^{-10}$ cm 3 (STP).cm/(s.cm 2 .cm Hg). An $\alpha' = 10$ for oxygen permeability divided by nitrogen permeability will be used. The feed rate is $L_f = 1 \times 10^6$ cm 3 (STP)/s , $x_f = 0.209$ and the fraction cut $\theta = 0.35$. The pressures selected for use are $p_h = 190$ cm Hg and $p_l = 19$ cm Hg. Assuming the crossflow model, calculate permeate composition, the reject composition, and the membrane area.

Simulation results at some values of θ or θ are given in the table below.

Use the graph provided on page 8 for determination of membrane area..

Perform only one and first trial using x=0.05.

θ or θ .	x	Ур	F _i
0	0.209	0.6550	0.6404
0.1482	0.1420	0.5940	0.9603
0.2000	0.1190	0.5690	1.1520

(25 marks)

Student Name:	ID No.:
Answer to Q2.(continued)	

Graph for determination of membrane area in Q2

			-		

Student Name:	ID No.:
---------------	---------

3) The following experimental data were obtained from the pervaporation of liquid mixtures of ethanol (1) and water (2) at feed temperature of 60°C for a permeate pressure of 76 mmHg, using a commercial silicone membrane.

wt % ethanol		Total Permeation Flux	
Feed Permeate		Kg/m²-h	
60.0	90.0	3.2	

Molecular weights for ethanol and water are 46.07 and 18.02 respectively.

At 60°C, vapour pressures for ethanol and water are 352 and 149 mmHg, respectively.

Liquid-phase activity coefficients at 60°C for the feed ethanol(1)-water(2) system are given by the van Laar equations as:

$$\ln \gamma_1 = 1.6276 \left[\frac{0.9232 x_2}{1.6276 x_1 + 0.9232 x_2} \right]^2$$

$$\ln \gamma_2 = 0.9232 \left[\frac{1.6276 x_1}{1.6276 x_1 + 0.9232 x_2} \right]^2$$

- a) Calculate values of permeance for ethanol and water in kmol/(h-m²-mmHg).
- b) The separation factors for ethanol $\alpha_{1,2}$.

(20 marks)

	ID No.:
* * * *	

4) A reverse osmosis plant is being used to treat 85 m³/h feed of brackish water at 27 °C containing 2,000 NaCl mg/l to produce potable water with 200 mg/l of dissolved NaCl. The plant uses cellulose acetate membranes arranged in two stages. The first stage consists of 10 pressure vessels and one element per vessel. The second stage consists of 8 pressure vessels and one element per vessel. The feed-side pressure at the first stage is 7 atm, while the concentrate from the first stage is fed at 16 atm to the second stage. The recovery for the first and second stages are 30% and 10%,respectively. The permeability constant for water $A_B = 4.20 \times 10^{-4} \text{ kg/s.m}^2$.atm and permeability constant for NaCl solute $A_A = 4.0 \times 10^{-7} \text{ m/s.}$ Molecular weight of NaCl is 58.5 g/mol. $R = 82.057 \times 10^{-3} \text{ m}^3$.atm/(k mol.K).

Calculate the followings:

- a) The overall membrane area for the first stage in m².
- b) The salt passage in the first stage in kg/(m².s)
- c) The total permeate product flow in m³/h.

(25 marks)
 End of questions.