PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester 1 Academic Year: 2005

Date: July 30, 2005 Time: 9:00-12:00

Subject: 226-401 Machining Technology Room: Robot

Instructions

• This is a **closed-book** examination.

• Calculator and notes are **not** allowed.

• There are 5 questions in 7 pages.

• Total score is 50.

List of Equations

$$\tan \phi = \frac{(a_c / a_0) \cos \gamma_{n_e}}{1 - (a_c / a_0) \sin \gamma_{n_e}}$$

$$F_s = F_c \cos \phi - F_t \sin \phi$$

$$A_c = A_s \sin \phi$$

ทุจริตในการสอบ โทษขั้นต่ำ คือ พักการเรียน 1 ภาคการศึกษา และปรับตกในรายวิชาที่ทุจริต

Name	Student ID
------	------------

Question #	Full Score	Assigned Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Thanate Ratanawilai, Ph.D

Name	••••	• • • •	٠.	••	•••	••	••	•••	••	••	•	••	•	 •	• •	•	•	• •	•	•	•	 •	•	•	• •	
		9	St	u	de	en	t	IJ	D					•			• •				•		•			

Problem 1: How many types of chip, produced during metal cutting? Give the name and describe the characteristic of each type. (10 points)

Problem 2: For an operation of metal cutting; (10 points)

2.1 Explain temperature distributions in metal cutting where the heat was generated and transferred to.

2.2 Draw in the figure below to identify the highest temperature.

Name	••	••	 •	••	•	•		•	•	•	• •		•	•	•	•	•	•	• •	•	•	•	•	•	•	•	 •	 •	•	•	• •	•	•	•
			•	S	h	ı	d	ı	ì	11	t	1	Ί))	_					_	_	_	_								_		

Problem 3: 1 inch diameter shaft and 10 inch long is to be produced from a mild steel shaft with 2 inch diameter of 14 inch in length by a turning operation at a feedrate of 0.01 inch per rev and a depth of cut 0.05 inch. Calculate (10 points)

- 3.1 How many cycles have to be machined?
- 3.2 If same spindle speed of 250 rpm was used for each cycle in Question 3.1, what is the total machining time?
- 3.3 Give the name of each surface on the workpiece and identify in the figure below.

Name	•••••
Student ID	

Problem 4: In an orthogonal cutting test on mild steel, the following results were obtained: (10 points)

Width of chip = 2.0 mm, Undeformed chip thickness = 0.50 mm,

Working normal rake = 0° , Chip thickness = 0.50 mm,

Cutting force = 900 N, Thrust force = 600 N

Calculate

4.1 The shear angle

4.2 The mean angle of friction of the tool face

4.3 The mean shear strength of the work material, in meganewtons per square metre (MN/m^2)

Name
Student ID

Problem 5: From the stress-strain curve below, give the name and explain the meaning of each point. (10 points)

Region (a)	 	 	
		<u> </u>	
Region (b)			
Position (c)			
``			
Position (d)			
Position (e)			

