Prince of Songkla University

Faculty of Engineering

Examination: Mid Term; Semester 1 Academic Year: 2005

Date: 1 August 2005 Time: 9:00-12:00

Subject: 216-434 Power Plant Engineering Room: A400

Instruction

1. The exam contains 2 parts, total of 6 problems.

2. Thermodynamic tables and calculator are allowed.

3. Pencil is not allowed for writing the answers.

Smarn Sen-Ngam Michael Allen August 20, 2005 mid148.doc

Student Code

Part I

(อาจารย์ สมาน)

1. โรงไฟฟ้ากังหันไอน้ำใช้ถ่านหินลิกไนต์เป็นเชื้อเพลิง มีกำลังการผลิตไฟฟ้า 320 MW ถ้าวัฏจักรแรงคินที่ใช้มี ประสิทธิภาพเชิงความร้อน 38% จงหาอัตราการระบายความร้อนทิ้งเป็น MW

(10 คะแนน)

2. จาก load curve ในรูป จงคำนวณหา energy used, average load และ load factor

(20 คะแนน)

Load Curve

Student Code Nam	e
------------------	---

3. อุปกรณ์ในรูปคืออะไร และจงบรรยายโดยสรุปถึงหน้าที่ของส่วนประกอบหมายเลข 1-5 ด้วย

(20 คะแนน)

Student Code	. Name
--------------	--------

4. กังหัน Curtis (velocity compound turbine) รับไอน้ำเข้า 450 กก./วินาที ที่ความเร็ว 725 ม./วินาที ทำมุม 20° ใบพัดมีความเร็ว 168 ม./วินาที ส.ป.ส. ความเร็วของใบตรึง (fixed blade) เป็น 0.93 และใบวิ่ง (moving blade) เป็น 0.90 จงเขียนผังความเร็วแล้วคำนวณหา กำลังผลิตในหน่วย กิโลวัตต์ (ใช้ใบพัดรูปร่างสมมาตรทั้งใบตรึง และใบวิ่ง)

(20 คะแนน)

	Part II
	(Prof. Allen)
1) Show	w that the total power available (P_{tot}) from a wind-turbine in Watts is given by:
	$P_{tot} = \rho A \frac{V^3}{2}$
where	ρ = air density in kg/m ³
	A is the cross-sectional area of the airstream intercepted by the wind-turbine (m ²);
and	V is the wind velocity (m/s $^{\circ}$)
.	
Estimat	te the total power available from a wind-turbine 2 metres in diameter if the wind velocity is
	a) 2 m/s;
	b) 4 m/s
How do	pes this affect wind-turbine design?
110 11 41	os ans arrow what arome acougn.
What d	oes the term "cut-in" velocity mean?
What d	oes the term "cut-out" velocity mean?
What is	'flat rating"?

Student Code Name	
What is the maximum theoretical efficiency of a wind-turbi	ne?
10%?	
20%?	
40%?	
60%?	
80%?	
100% ?	
What is the usual range of practical wind-turbine efficiencies	es
5 to 80%?	
10 to 60%?	
15 to 40%?	
20 to 30%?	
What does the term "Plant capacity factor" mean?	
What is the value of the plant-capacity factor for a typical r	nodern wind-turbine?
10-20%?	
20-30%?	
30-40%?	
40-50%?	
50-60%?	
60-70%?	
70-80%?	
80-90%?	
90-100%?	

Data: Density of air at 27° C = 1.16 kg/m^3

2) Geothermal steam at 200°C is flash-separated at 800kPa in the single flash, liquid dominated system shown as Figure 1.

Using a T-S diagram, indicate the probable conditions at (1), (3), (4), (5) and (6)

Find:

1) The mass-flow rate of water from the well and of the re-injected brine per unit mass-flow rate of steam into the turbine;

	Student Code
2)	The ratio of total enthalpy of spent brine (5) to total enthalpy of turbine steam (4);
3)	If the turbine expands the steam from 800 kPa to 10 kPa, find the overall efficiency of
	the process.
Hint:	Assume that the work done by the re-injection pumps = 0.

Student Code	Name

Data: Saturated steam properties

Temperature Pressure		Enthalpy - kJ/kg		Entropy - kJ/kg K	
Sat. °C	Sat	Sat. Liquid	Evaporation h _{fg}	Sat. Liquid	Evaporation s _{fg}
200	1.5538 MPa	852.45	1940.7	2.3309	4.1014
170.43	800 kPa	721.11	2048.0	2.0462	4.6166
45.81	10 kPa	191.83	2392.8	0.6493	7.5009

Michael Allen