Prince of Songkla University

Faculty of Engineering

Final Examination: Semester I

Academic Year 2005

Monday, October 10, 2005

Time 9:00-12:00

220-506 Stability of Structures

Room R300

Instructions.

- 1. There are 3 questions with equal marks.
- 2. Attempt all questions.
- 3. Books and notes are allowed.
- 4. Pencils are recommended to be used in answering the questions.

Instructor: Fukit Nilrat

1. Find the critical load P_{cr} of the frame shown using the matrix stiffness method by assuming that all members are inextensible.

EI constant

2. A simply supported steel 300x150 mm H-beam is subjected to uniformly distributed load w at the top flange of the beam as shown. The beam span is 5 m and there is no lateral bracing between the two supports. Determine the critical uniform load w_{cr} in kg/m corresponding to the elastic lateral torsional buckling of the beam.

3. A hinged-hinged column is subjected to an axial load P as shown. By using the Rayleigh-Ritz method and assuming that the lateral displacement v in the y-direction for $0 \le x \le l/2$ is $v = a_1 x^2 + a_2 x^3$, determine the approximate elastic buckling load P_{cr} and compare the obtained critical load to the Euler buckling load $(\pi^2 E l/l^2)$. (Since the problem is symmetrical, the integration from θ to l is equal to twice of the integration from θ to l/2.)

