มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบปลายภาค ประจำภาคการศึกษา 1	ปีการศึกษา 2548
วันที่ 14/10/ 2548	เวลา 9.00 — 12.00 น
วิชา 220-381: Computer Applications in Civil Engineering	
ท้องสอบ A401	
ชื่อ-สกุลรหัสรหัส	

คำชี้แจง

- 1.ข้อสอบทั้งหมคมี 5 ข้อ คะแนนรวม 100 คะแนน คังแสคงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมค 3 หน้า (ไม่รวมปก)
- 3.ให้ทำหมคทุกข้อลงในสมุคคำตอบ
- 4.ห้ามนำเอกสารใดๆ เข้าห้องสอบ **ทุจริตจะได้ E**
- 5.อนุญาตให้ใช้เครื่องคิดเลขได้ทุกชนิด
- 6.กระคาษทคที่แจกให้ไม่ต้องส่งคืน ถ้าไม่พอขอเพิ่มที่อาจารย์คุมสอบ
- 7.ห้ามหยิบ หรือยืมสิ่งของใคๆ ของผู้อื่นในห้องสอบ
- 8. อนุญาตให้นำ Dictionary เข้าห้องสอบได้
- 9. **GOOD LUCK**

ตารางคะแนน

ข้อที่	คะแนนเต็ม	ได้
1	20	
2	20	
3	30	
4	30	
5	30	
Bonus	30	
รวม	130	

Asst. Prof. Dr. Sakchai Prechaverakul

and

Asst. Prof. Dr. Suchart Limkatanyu

Problem 1 (20 Points)

Determine α and β , so that the polynomial

$$p(x) = \alpha + \beta x$$

best approximate the given data

xi	-2	-1	0	1	2
f(xi)	0.5	0.5	2	3.5	3.5

in the Least-Square sense.

Problem 2 (20 Points)

Let $f(x) = (1-x^2)^2$ for $-1 \le x \le 1$. Find a cubic polynomial that passes through the points (-1, f(-1)), (0, f(0)), and (1, f(1)), and also the first derivative of this polynomial equals, f'(0) at x = 0.

Problem 3 (30 Points)

- (a) What is the definition of a cubic spline interpolation? Give a set of boundary conditions that can uniquely determine a cubic spline interpolation.
- (b) Fit the data in table shown below with first-order (linear) spline and evaluate the function at x = 5.

xi	3	4.5	7	9
f(xi)	2.5	1	2.5	0.5

(c) From the data in (b), construct the Lagrange Polynomial Interpolation and evaluate the function at x = 5.

Problem 4 (30 Points)

The deformation of the axially loaded member shown below is completely defined by the differential equation:

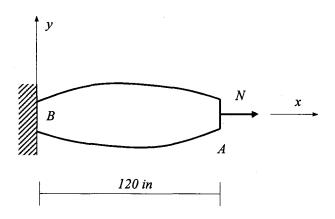
$$\frac{\partial u}{\partial x} = \frac{N(x)}{A(x)E(x)}$$

where u is Axial Displacement; N(x) is axial force applied; E(x) is Young's modulus of elasticity; and A(x) is cross-sectional area.

Determine the relative displacement of Point A with respect to Point B if this problem can be easily solved by integrating the following expression:

$$u_A - u_B = \int_0^{120} \left(\frac{dx}{\frac{-30}{36} x^2 + 100x + 3000} \right)$$

- (a) Employ the Composite Trapezoidal Rule of Integration to perform this integration, using h = 10 in.
- (b) Employ the Composite Simpson's 1/3 Rule of Integration to perform this integration, using h = 30 in.



Problem 5 (20 Points)

Determine the values of the constants $\alpha_0, \dots \alpha_3$, so that the integration rule

$$\int_{0}^{1} f(x) dx = \sum_{i=0}^{3} \alpha_{i} f(i/3)$$

is exact for all polynomials of degree ≤ 3 .

BONUS (30 Points)

- (a) What is major difference between the Regression and Interpolation?
- (b) What is the main advantage of the Spline interpolation scheme?
- (c) What is the main feature of the Lagrange Polynomial?