۵	٠.٠٠
ป	อรหัสรหัส

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1

ประจำปีการศึกษา 2548

วันที่ : 3 ตุลาคม 2548

เวลา : 9:00 - 12:00

วิชา : Advance Chemical Engineering Thermodynamics I (230-610)

ห้อง : R300

- อนุญาตให้นำหนังสือและเอกสารอื่นๆ เข้าห้องสอบได้
- อนุญาตให้นำเครื่องคิดเลขทุกรุ่นเข้าห้องสอบได้
- ข้อสอบมีทั้งหมด 6 ข้อ (10 หน้า) ให้ทำทุกข้อ
- กระดาษไม่พอให้ทำต่อด้านหลัง
- ใช้ดินสอทำข้อสอบได้

ทุจริตในการสอบโทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

หน้าที่	ข้อที่	คะแนนเต็ม	คะแนนที่ได้
2	1	15	
3	2	15	
5	3	15	
7	4	15	
8	5	10	
9	6	30	
	คะแนนรวม	100	

ยกามาศ เจษฎ์พัฒนานนท์
26 กันยายน 2548

รหัส																			
ลท พ		٠			٠	٠	٠	٠	٠				٠,			•	٠	•	,

1. Estimate V and ϕ for a mixture of 0.4 mol of methyl ethyl ketone (1) and 0.6 mol of toluene (2) at 60° C and 20 kPa by the Redlich/Kwong equation. (15 points)

รหัส.																							
J 17161.			٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠.		٠	٠	٠	٠	٠		٠	

2. Consider a binary system of species 1 and 2 in which the liquid phase exhibits partial miscibility. In the regions of miscibility, the excess Gibbs energy at a particular temperature is expressed by the equation: $\frac{G^E}{RT} = 2.25x_1x_2$ In addition, the vapor pressures of the pure species are: $P_1^{sat} = 75$ kPa and $P_2^{sat} = 110$

In addition, the vapor pressures of the pure species are: $P_1^{\text{sat}} = 75 \text{ kPa}$ and $P_2^{\text{sat}} = 110 \text{ kPa}$. (15 points)

- (a) What are the equilibrium compositions x_1^{α} and x_1^{β} ? (3 points)
- (b) Determine the three phase equilibrium pressure and three phase vapor composition.(5 points)
- (c) Show the trend of Pxy diagram. (7 points)

รหัส.															
งทพ.						٠	٠	٠.	٠		٠.			٠.	

3. For the following systems, finish all calculations.

(15 points)

3.1 A single-effect evaporator concentrates a 25% (by weight) aqueous solution of H_2SO_4 to 75%. The feed rate is 100 lb/s, and the feed temperature is $32^{\circ}F$. The evaporator operates at an absolute pressure of 1 psia, and under these conditions the boiling point of a 75% solution of H_2SO_4 is $200^{\circ}F$. What is the heat-transfer rate in the evaporator? (10 points)

Note: Enthalpy of superheated steam at 200°F and 1 psia = 1150.2 Btu/lb.

รหัส.															

- 3.2 A 25% aqueous solution of H_2SO_4 at $32^{\circ}F$ is mixed with a 75% aqueous solution of H_2SO_4 at $100^{\circ}F$ to form a solution containing 65% H_2SO_4 .
- (a) If the mixing is done adiabatically, what is the final temperature of the solution?
- (b) If the final temperature is brought to 80°F, how much heat must be removed during the process?

(5 points)

รหัส.																										
d V161.	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			٠	٠	٠	٠	٠	•	•	•

4. Calculate the equilibrium constant for the vapor-phase hydration of acetylene to form acetaldehyde at 150 and 300°C. (15 points)

~°~														
รหัส.								 					 	

5. Estimate the maximum conversion of acetylene to acetaldehyde by vapor-phase hydration at 300°C and 1 bar for an initial steam-to-acetylene ratio of 4. (10 points)

รหัส.															

- 6. Acetylene is catalytically hydrogenated to ethylene at 1155°C and 35 bars for an initial acetylene-to-hydrogen ratio of 2.
- (a) What is the composition of the product stream at equilibrium?
- (b) Would it better to carry out the reaction at pressure less than 35 bars?
- (c) Would it better to carry out the reaction at temperature less than 1155°C?

(30 points)