UHEINENFAIVAIUATUNS

aadmInssumans
msaeunatama Yszdimamsanmd ¢ 1 dszdiimsanmns 2548
Sufiz 10 qanw 2548 na: 13:30-16:30
3 240-340 Compiler Structure niea: R201

=

~ :’J c; =) v o d' (% =) =3
nasalumsaey Inududmine Usuanlusedniineia uaziinmsiGeu 1 mamsanm

o v o % o Qv ¥ v A o ¥
AIA: DIUINUATIDUAVDIUDADU uazmlmzu11mﬂn1i]ﬂﬂmmmmi)aﬂu
d' ~ T] A
ﬂuﬁy‘lﬂ: AIDIVIUAN) 1 HU ']J1ﬂﬂ'l NIDAUTD
1] LY | d' o=
"luautym: LATRHGA &ﬂﬂﬁ151ﬂ”} LRZAIDIAALAUY
a1 3 92 144 (180 W)

¥ sHaInANY Section

Notational conventions:

* non-terminal symbols of a grammar are in boldface Courier lower-case letters; example: term

e terminal symbols (tokens) are in boldface Courier upper-case letters, and are either given literally in
single quotes, or as a token name; examples: ’ ! * NUMBER ' <="

e the symbols — and | mark off the parts of a production
e the symbol € represents the null or empty string of zero characters

Page 1 of 11

1. The grammar
e > e '+ e | e ‘¥ e | NUMBER

has the operator-precedence relations as in the following table:

NUMBER V4o ‘g $
NUMBER o> o> >
Vs <e [<e o>
‘% <e o> *> o>
$ <e <o <e
The input to be parsed is:
5+49%2+1

a) Show the string with the end markers and precedence relations inserted.

b) Show the parsing, step by step, including the arrows, and the productions reduced by, and fix-up after
each reduction.

Page 2 of 11

c) Draw the parse tree.

* Page3ofll

2. The grammar
(1) bexpr — bexpr OR bterm

(2) | bterm

(3) bterm — bterm AND bfactor

(4) | bfactor

(5) bfactor — NOT bfactor

(6) | '(' bexpr ')’

(7) | TRUE

(8) | FALSE
has the parse table:

action goto
state AND OR NOT TRUE FALSE () S bexpr | Bterm | bfactor

0 s2 s3 sl s4 5 6 7
1 18 8 r8 r8 r8 r8 r8 r8
2 s2 s3 sl s4 8
3 r7 r7 r7 r7 r7 7 17 r7
4 s2 s3 sl s4 9 6 7
5 sll s10
6 s12 12 r2 r2 r2 r2 r2 r2
7 r4 4 r4 r4 r4 r4 r4 r4
8 15 5 5 5 5 r5 r5 r5
9 sll s13
10 accept
11 s2 s3 sl sd 14 7
12 s2 s3 sl s4 15
13 r6 16 r6 16 6 r6 16 r6
14 s12 rl rl rl rl rl rl rl
15 r3 3 r3 3 r3 r3 r3 3

a) Show the progress of the parse, input shifted and states pushed or popped, go-to operations, the rules

reduced by, and changes to the parse tree for the input

$ NOT (FALSE OR TRUE) AND TRUE $

Page 4 of 11

b) Draw the parse tree.

Page 5 of 11

3. Suppose that the grammar:

bexpr — bexpr ‘||’ bterm
| bterm

bterm — bterm ‘&&’ bfactor
| bfactor

bfactor — ‘!’ bfactor
I 1 (u bexpr v) i
| ‘true’
| ‘false’
is to be programmed into an interpreter.

a) Show the rules (regular expressions and actions) that would be needed in the second part of a 1ex or

”

f1ex input file. Use capital-letter token names that begin with “ToxeN_”.

b) Show the C++ object header file declarations for the variables, enumerations and method
prototypes required to store the data that bexpr, bterm and bfactor nodes need to remember in a parse tree.

Page 6 of 11

c¢) How would you tell bison what the goal or start symbol of this grammar was? In which section of
the parser description file does it go?

d) Show the bison declaration to say that the parser value stack can contain pointers to the bexpr,
bterm and bfactor node types, as well as Boolean constants for the TRUE and FALSE tokens. In which section
of the input file does this go?

e) Show parser input to name the tokens (in capital letters, beginning with “Token_"), declare the
associativity and precedence of the operator tokens (logical or ||’ is less than logical aAND ‘&&’ which is
less than the unary NOT °!” operator; or and AND are left associative), and set the type of node pointer that
the non-terminal symbols of the grammar put on the parse value stack. In which section of the input file does
this go?

Page 8 of 11

f) If the parser is described in a file named “boolean.y”, and *bison —d -t —v*‘ produces the default
output files, what text must be included in the first part of the 1ex or £1ex input file to declare the token
values the same as in the parser, and make the node structure types and the create and evaluate method
prototypes known to the parser?

g) Show the rules (productions and actions) that would be placed in the parser description input file.
Use lower case non-terminal names, as suggested in the web page article.

Page 9 of 11

h) Show the code for the method to create a bexpr node.

1) Show the code for the method to evaluate a bexpr node.

Page 10 of 11

j) Show the code for the method to create a bfactor node.

k) Show the code for the method to evaluate a bfactor node.

Page 11 of 11

