Name	ID	Section

มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1

ปีการศึกษา 2548

วันที่ 7 ตุลาคม 2548

เวลา 9.00-12.00 น.

วิชา 215-221 Engineering Mechanics II

ห้องสอบ Robot: 01, 02, 03, 05

R200:03,04

คำสั่ง

1. ข้อสอบมีทั้งหมด 5 ให้ทำทุกข้อแต่ละข้อมีคะแนนเท่ากัน

- 2. อนุญาตให้นำ Dictionary เข้าห้องสอบได้
- 3. อนุญาตให้นำเครื่องคิดเลขเข้าห้องสอบ
- 4. ให้เขียนชื่อ-สกุล, รหัสนักศึกษา และ section ลงในข้อสอบทุกหน้า
- 5. ห้ามยืมอุปกรณ์ทุกชนิดในห้องสอบ
- 6. แก้ปัญหาโจทย์โดยวิธีที่ระบุเท่านั้น มิฉะนั้นจะไม่ได้คะแนน
- 7. ให้ทำแต่ละข้อในหน้าที่มีโจทย์ หากไม่พอให้ทำด้านหลังของหน้านั้นเท่านั้น เนื่องจากข้อ สอบจะถูกแยกตรวจ มิฉะนั้นจะไม่ได้คะแนน

ทาริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น และพักการเรียน 1 ภาคการศึกษา

ข้อที่	คะแนนเต็ม	คะแนนที่ได้
1	15	
2	15	
3	15	
4	15	
5	15	
รวม	75(30%)	

ผ.ศ. สุวัฒน์	ไทยนะ	(01)
ดร. จีระภา	สุขแก้ว	(02)
ดร. กิตตินันท์	มลิวรรณ	(03)
อ. ฐานันดร์ศักดิ์	เทพญา	(04)
ผ.ศ. ไพโรจน์	คีรีรัตน์	(05)
(ผู้ออกข้อสอบ)		

Name	ID	Section

1) The van has a weight of 22,500 N and center of gravity at G_v . It carries a fixed 4000 N load which has a center of gravity at G_l . If the van is traveling at 12 m/s, determine the distance it skids before stopping. The brakes cause all the wheels to lock or skid. The coefficient between the wheels and the pavement is $\mu_k = 0.3$. Compare this distance with that of the van being empty.

(Use Force and Acceleration Method only)

Name	ID	Section
Number 1		

2) The 20 kg slender rod is pinned at O. Determine the angular acceleration of the rod and the reactions at O just after the cable is cut.

(Use Force and Acceleration Method only)

3) The 8-kg thin disk is released from rest, determine the angular acceleration on the disk. The coefficients of static and kinetic friction between the disk and inclined plane are $\mu_s = 0.15$ and $\mu_k = 0.1$ respectively.

(Use Force and Acceleration Method only)

4) At the instant the spring becomes undeformed, the center of the 40-kg disk has a speed of 4 m/s. From this point determine the distance d the disk moves down the plane before momentarily stopping. The disk rolls without slipping.

(Use Work and Energy Method only)

Name	ID	Section

5) ให้เลือกทำแค่ข้อเคียวเท่านั้น

(choice 1) A motor supplies a constant torque or twist of M=120 kN.m to the drum. If the drum has a weight of 30 kN and a radius of gyration of $k_o = 0.8$ m, determine the speed of the 15-kN crate A after it rises s = 4 m starting from rest. Neglect the mass of the cord. (Use Work and Energy Method only)

5) (choice 2) The pulley has a weight of 8 kN and may be treated as a thin disk. A cord wrapped over its surface is subjected to forces $T_A = 4$ kN and $T_B = 5$ kN. Determine the angular velocity of the pulley when t = 4 s if it starts from rest when t = 0. Neglect the mass of the cord. (Use Impulse and Momentum Method only)

