Name Student ID # misucciot	Name	•	Student ID # :	Instructor:
-----------------------------	------	---	----------------	-------------

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1 วันพุธที่ 12 ตุลาคม พ.ศ. 2548

วิชา 215-324 : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา 2548 เวลา 09.00 – 12.00 น. ห้องสอบ R201, R300

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 4 ข้อ ให้ทำลงในข้อสอบทุกข้อ และทุกข้อมีคะแนนเท่ากัน
- 2. อนุญาตให้ใช้เครื่องคิดเลขได้
- 3. ให้ใช้เครื่องมือเขียนแบบได้
- 4. ให้นำตำราเรียนประจำวิชาเข้าห้องสอบได้ แต่ไม่อนุญาตในนำเอกสารอื่น ๆ

ผศ.ดร. วรวุธ วิสุทธิ์เมธางกูร อ. ประกิต หงษ์หิรัญเรื่อง ผู้ออกข้อสอบ

ข้อ	คะแนน
1	
2	
3	
4	
รวม	

Name:	Student ID #:	Instructor:
ranic	π .	1115tf uctor

1) In the mechanism shown is drawn with the scale of 1:2. If P₂ acting at point B is 30 N, determine P₄ to keep the mechanism in static equilibrium at this position. Also draw the free body diagrams of links 2, 3, and 4. The friction between links 1 and 4 is negligible.

	C. 1 . TD #	T	
Name:	Student ID #:	 Instructor:	

2) The shaft in the figure is to be balanced by adding masses in the correction planes L and R. The weights of the three masses m_1 , m_2 , and m_3 are 0.4, 0.3, and 0.1 kg, respectively. The dimensions are $R_1 = 50$ mm, $R_2 = 40$ mm, $R_3 = 40$ mm, $R_3 = 40$ mm, $R_4 = 10$ mm, $R_5 = 100$ mm, and $R_5 = 100$ mm. Calculate the magnitudes of the corrections in kg-mm.

Name	•	Student ID #:	Instructor:
1 101110	·	Student ID // .	Instructor .

3) Link AB is rotating clockwise and has an accelerations of point A and B as shown. AB is 40 mm long, and its center of mass is at G, mid-length between A and B. If the mass of link AB is 2 kg, and its mass moment of inertia about G, I_G, is 260 kg-mm², determine the resultant force acting on this link through G and the resultant moment about point G.

Name	:		Student	ID	#	:	Instructor:	
_ ,	•	AND THE PARTY OF T		_				

4) The input of the mechanism shown is given as $\theta_2 = 90^\circ$, $\omega_2 = 10 \, \text{rad/s}$ clockwise, and $\alpha_2 = 25 \, \text{rad/s}^2$ counterclockwise. The velocity polygon can be created as shown. Determine the angular acceleration of link 3, α_3 .

Scale 1 mm : 1 mm

Scale 1 mm : 5 mm/s

Scale 1 mm : 50 mm/s 2