ที่อ	รทัส	ผู้สอน	หน้า	1 จาก 6
------	------	--------	------	---------

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1 วันอาทิตย์ที่ 9 ตุลาคม พ.ศ. 2548 วิชา 215-351 : การสั่นสะเทือนเชิงกล

ประจำปีการศึกษา 2548 เวลา 13.30-16.30 น. ท้อง R300

<u>คำสั่ง</u>

1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำลงในข้อสอบทุกข้อ และทุกข้อมีคะแนนเท่ากัน

2. อนุญาตให้ใช้เครื่องคิดเลขได้

3. ให้นำตำราเรียนประจำวิชาเข้าห้องสอบได้ แต่ไม่อนุญาตให้นำเอกสารอื่น ๆ

ผส.ดร. วรวุธ วิสุทธิ์เมธางกูร อ.ประกิต หงษ์หิรัญเรื่อง ผู้ออกข้อสอบ

f e	Asuuu
1	
2	
3	
4	
5	
มวม	

ชีอ

1) An undamped spring-mass system with a mass of 5 kg and a stiffness of 4000 N/m is hit by an impact hammer. The mass then oscillates with an amplitude of 4 cm. Determine (a) the impulse given by the hammer, and (b) the frequency of oscillation.

ส่อ	วหัส	ผู้สอน	หน้า	3 จาก	6
ПÓ	 9 MPI	MP1019	71 29 1	J 71111	v

2) Determine the equations of motion of the system shown, and express them in matrix-vector form. The polar moment of inertia of the disk is given as $J_o = \frac{1}{2} m_o r^2$. Assume the rope does not slip.

a de		รหัส	ผู้สอน	หน้า 4 จาก 6
------	--	------	--------	--------------

3) If a 2 d.o.f system has a mass matrix, $[M] = \begin{bmatrix} 1 & 0 \\ 0 & 0.3 \end{bmatrix}$ kg, and a stiffness matrix, $[K] = \begin{bmatrix} 5000 & 100 \\ 100 & 2030 \end{bmatrix}$ N/m, determine the natural frequencies and mode shapes of this system.

ที่อ	รหัส	ผัสอน	หน้า 5 จาก 6
	* * * * * * * * * * * * * * * * * * * *		

4) An electric motor of mass 60 kg, rated speed 3000 rpm, has an unbalance of 0.002 kg-m. The motor is to be mounted on an undamped isolator to achieve a force transmissibility less than 0.25. Determine (a) the stiffness of the isolator, (b) the amplitude of oscillation of the motor, and (c) the force transmitted to the foundation.

ชื่อ		รหัส	ผู้สอน	หน้า 6 จาก 6
------	--	------	--------	--------------

5) A spring-mass system with 40 kg mass and stiffness 1×10^5 N/m. The system is found to have a large vibration under a harmonic force of amplitude 300 N. When an undamped vibration absorber of mass 30 kg and stiffness k_2 is added to the system, the 40 kg mass then has zero amplitude. Determine the stiffness k_2 and the steady-state amplitude of the 30 kg mass.