

การสอบกลางภาค ประจำภาคการศึกษาที่ 2

วันที่ : 13 ธันวาคม 2548

วิชา : 240-361 Introduction to Queueing Theory

ปีการศึกษา : 2548

เวลา : 13:30 - 16:30

ห้อง : A401

ทุจริดในการสอบ โทษขั้นด่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียนหนึ่งภาคการศึกษา

<u>คำสั่ง</u>

- 1. ข้อสอบมี 7 ข้อ 10 หน้า (ไม่รวมปก)
- 2. ห้ามนำเครื่องคิดเลขเข้าห้องสอบ
- 3. แสดงวิธีทำและเขียนคำตอบให้ชัดเจน ถ้าอ่านไม่ออกถือว่าตอบผิด
- 4. อนุญาดให้จดบันทึกเขียนด้วยลายมือขนาด A4 เข้าห้องสอบ

v v a	ᆈ				
รหสนกศึกษา :	ชอ	:	:	ตอน	:
			-	-	

คำถาม	1	2	3	4	5	6	7	Total
คะแนน								

Student	ID ·		

Name: Section:

1. Suppose a cellular telephone is equally likely to make zero handoffs (H_0) , one handoff (H_1) , or more than one handoff (H_2) . Also, a caller is either on foot (F) with probability 5/12 or in a vehicle (V). Suppose we also learn that $\frac{1}{4}$ of all callers are on foot making calls with no handoffs and that $\frac{1}{6}$ of all callers are vehicle users making calls with a single handoff. Given these additional facts, find all possible ways to fill in the table of probabilities(e.g. find p_0 , p_1 , p_2 , q_0 , q_1 , q_2). (6 marks)

Probability table

	H₀	H₁	H ₂
F	р _о	P1	p ₂
V	9 ₀	9 1	q ₂

Answer		 	***************************************
Municipality	***************************************		

- 2. Given a packet is corrupted with probability ε. From the following applications, give the name of random variable (3marks)
 - (a) Let Y denote the number of packet received in error out of 100 packets transmitted. Y has the PMF

$$P_{\gamma}(y) = \begin{cases} \binom{100}{y} (\varepsilon)^{y} (1-\varepsilon)^{100-y} & y = 0,1,...,100 \\ 0 & otherwise \end{cases}$$

The expected values of Y is $E[Y] = 100\epsilon$

Answer		

Student ID	: Name :	Section :
(b)	If packet arrivals with an average arrival ra	ate of 1000 packets per second, then the
	number N of packets that arrive in 5 second	s has the PMF
	$P_{N}(n) = \begin{cases} 5000^{n} e^{-5000} / \\ 0 \end{cases}$	/n! $n = 0,1,$
	1,,(1)	otherwise
	The expected value of N is $E[N] = 5000$	
Answer_		
······································		
(c)	Let L equal the number of packets that m	nust be received to decode 5 packets in
	error. L has the PMF	
	$ \left(\frac{l-1}{l} \right) \varepsilon^{5} (1-\varepsilon) $	$(l)^{l-5}$ $l=5,6,$
	$P_{L}(l) = \begin{cases} \binom{l-1}{4} \varepsilon^{5} (1 - \varepsilon) \\ 0 \end{cases}$	otherwise
	(°	
	The expected value of L is $E[L] = 5/\epsilon$	
Answer_		
2 In a m	packet voice communications system, a sour	con transmits nackets containing digitized
-	th to a receiver. Because transmission errors	
-	(NAK) is trans	•
`	s of each received packet. When the tr	
	nsmitted. Voice packets are delay sensitive	
	mum of d times. If a packet transmission	-
	ess probability p , answer the following questi	-
	nat is the PMF of T, the number of times a pa	
		,
111151101		
		A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

Student II): Name:	Section :
error is rec When is se retran	arce wishes to transmit data packets to a receded detection to identify packets that have been derived error-free, the receiver sends an acknown the receiver gets a packet with errors, a negative to the source. Each time the source is smitted. We assume that each packet transfer with probability q . Find the PMF of X , the number of times that	corrupted by radio noise. When a packet owledgment (ACK) back to the source. gative acknowledgment (NAK) message surce receives a NAK, the packet is mission is independently corrupted by a packet is transmitted by the source
A		(3 marks)
(b)	Suppose each packet takes 1 millisecond to additional millisecond to receiver the ackin before retransmitting. Let <u>T equal the time</u> received. What is the relationship between T	nowledgment message (ACK or NAK) required until the packet is successfully and X? (1 marks)

	Name:	Sect	1011
	From question 4(a) what is the PMF of T if T		ks)
(d)	Find the expected values of the random varia	ble T (5 marks)	
	Given $\sum_{x=1}^{\infty} q^x = \frac{1}{1-q}$ and $\sum_{x=1}^{\infty} xq^x = \frac{q}{(1-q)^2}$ w	when $ a < 1$	
	$\sum_{x=1}^{q} q^{2} = 1 - q \text{and} \sum_{x=1}^{q} xq^{2} (1-q)^{2}$		
Answer_			
Answer			
Answer			
Answer			

Student ID	Nama
Student ID:	Name:

___Section :____

5. A computer network connects two nodes A and B through intermediate nodes C, D, E, F as shown below. For every pair of directly connected nodes, say *i* and *j*, there is a given probability p_{ij} that the link from *i* to *j* is up. We assume that link failures are independent of each other. What is the probability that there is a path connecting A and B in which all links are up? (6 marks)

Answer	

	<u> </u>

Student ID: Name:	Section :
-------------------	-----------

6. Random variable X has the PDF:

$$f_X(x) = \begin{cases} c \frac{x}{2} e^{-x/2} & x \ge 0\\ 0 & otherwise \end{cases}$$

Find the following:	(10 marks)	
(a) The constant $c.(4)$	marks)	
Answer		
(b) The CDF $F_X(x)$.	(4 marks)	
<u> </u>		***************************************

Student ID:	Name:	Section
(c) $P[0 \le X \le 6]$	(1 mark)	
Answer		

		700 Alda Artino (1900)
(d) $P[-4 \le X \le 4]$	1] (1 mark)	
Answer		

Student ID:	
Bludelli ID.	

3.1	·
N	ame

_Section:____

7. The peak temperature T, as measured in degrees Fahrenheit, on an April day in Bangkok is the Gaussian (85, 10) random variable. Find the following: (10 marks)

z	$\Phi(z)$
1	0.841
1.5	0.933
2	0.977
2.5	0.993

(a) P[T > 100] (2 marks)

Answer					
n Billianian in Control of the Contr		***************************************	 ***************************************	***************************************	***************************************
(b) $P[T < 60]$	(2 marks)				
	***************************************				~~~ ~

Student ID:	Name :	Section :
(c) $P[70 \le T \le 100]$	(3 marks)	
the area under the be	from questions above, sketch <i>the PDF</i> ll and the height of the peak. (3 mar	rks)
the area under the be		rks)
the area under the be	ll and the height of the peak. (3 mar	rks)
the area under the be	ll and the height of the peak. (3 mar	rks)
the area under the be	ll and the height of the peak. (3 mar	·ks)
the area under the be	ll and the height of the peak. (3 mar	·ks)
the area under the be	ll and the height of the peak. (3 mar	·ks)
the area under the be	ll and the height of the peak. (3 mar	·ks)