PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Mid-term Examination: Semester 2

Academic Year: 2005

Date: December 13, 2005

Time: 13:30-16:30

Subject: 226-305 Machine Design

Room: A400

Instructions

Books, sheets of paper note are allowed.

• Dictionary and calculator are allowed.

There are 4 questions in 10 pages.

Answer all questions in these sheets.

• Total score is 25.

• Your answers could be in English or Thai.

• Please check all questions before start working.

- 1		1
	Name:	Student ID

Question #	Full Score	Assigned Score
1	10	
2	5	
3	5	
4	5	
Total	25	

Mr.Srisit Chianrabutra

ทุจริตในการสอบโทษขั้นต่ำ คือ พักการเรียน 1 ภาคการศึกษา และปรับตกในรายวิชานั้น

Question 1: Fill the following words in the blanks. (10 Marks)

Yield Strength	Tensile Strength	Fatigue Strength
Endurance Limit	Shear Strength	Shear
Standard	True Stress	Ultimate Strength
Endurance Strength	Temperature	Code
Coulomb-Mohr Theory	Modified Mohr Theory	Maximum Shear Stress Theory
Maximum Normal Stress Theory	Distortion Energy Theory	Failure Theory

1.	is a set of specifications for analysis, design, manufacture
	and construction of an item?
2.	is a set of specifications for parts, materials, or processes
	intended to achieve uniformity, efficiency, and quality?
3.	The is the stress at which the material begins to plastically
	deform. It is usually measured as the 0.2% offset value - the point at which the
	stress-strain for the material intersects a line which is offset from the elastic
	region of the stress-strain curve by 0.2%.
4.	is the stress that a fatigue specimen was capable of
	withstanding for a specified number of load cycles, and therefore refers to any
	point on a standard S-N plot or endurance strength, on the
	other hand, is the limiting stress level below which the material will not fai
	regardless of the number of cycles of loading.
5.	Engineered products frequently operate over a range of temperatures and often
	have to endure extremes. The materials that are used in
	these products must exhibit the desired mechanical and physical properties over
	this range of temperatures. Thus, it is imperative that the designers consider
	both the short-range and long-range effects of temperature on the materials.
6.	is usually referred to as the capability of a material or
	component to take a static load; shock, force, bending moment, etc.
7.	focused on rupture or yielding failures, hence dealing with
	material strengths.
8.	Both the and the are acceptable as
	failure criteria in the case of static loading of ductile, homogeneous, isotropic
	materials whose compressive and tensile strengths are of the same magnitude.

Question 2: Sketch preliminary layout of this machine. (5 Marks)

Question 3: (5 Marks)

In the figure shown, an AISI 4140 normalized steel crank loaded by a force F that causes twisting and bending of a $\frac{3}{4}$ in-diameter shaft fixed to a support at the origin of the reference system. In actuality, the support may be an inertia that we wish to rotate, but for the purposes of a stress analysis we can consider this a static problem. Find maximum force F before yielding occurs at point A.

$$(S_u = 148 \text{ kpsi}, S_y = 95 \text{ kpsi}, H_B = 302)$$

- (a) Use Maximum Shear Stress Theory.
- (b) Use Distortion Energy Theory.

Question 4: (5 Marks)

In the figure shown, shaft A, made of AISI 1040 Q&T steel and a machined surface, is welded to a fixed support and is subjected to loading by equal and opposite forces F via shaft B. A theoretical stress concentration $K_{t\,s}$ of 1.6 is induced by the 4-mm fillet. The length of shaft A from the fixed support to the connection at shaft B is 1 m. The load F cycles from 1 to 3 kN. (at room temperature and 50 percent reliability)

(
$$S_{ut}$$
 = 779 MPa, S_{yt} = 593 MPa, S_{su} = 522 MPa, S_{sy} = 342 MPa, H_B = 262)

- (a) For shaft A, find the factor of safety for infinite life using the modified Goodman fatigue failure criterion.
- (b) Repeat part (a) using the Gerber fatigue failure criterion.
- (c) Repeat part (a) and (b) in an operating environment at 100° C for 99 percent reliability.