PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Mid-term Examination: Semester 2

Academic Year: 2005

Date: December 10, 2005

Time: 9:00-12:00

Subject: 226-331 Industrial Automatic Control

Room: A400

Г		 	 		 	
	Name	 	 	ID	 	

Instruction

- 1. Attempt all questions in this exam paper.
- 2. A <u>closed-book exam.</u>, No sheets or any materials is allowed.
- 3. A calculator and a dictionary are allowed.
- 4. The scores are summarized in following table.

Question	Full score	Assigned score
1	10	
2	10	
3	10	
4	10	
5	5	
Total	45	

Asst. Prof. Somchai Chuchom

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Name	 	 <i>ID</i>	

Question 1

1.1) Identify the components, inputs and outputs, and describe the operation of biological control system consisting of a human being reaching for an object. (5 marks)

1.2) Draw a block diagram for the human reaching for an object system above. (5 marks)

Question 2 (10 marks)

A high-precision positioning slide is shown in Figure E2.20. Determine the transfer function $X_p(s)/X_{in}(s)$ when the drive shaft friction is $b_d=0.7$, the drive shaft spring constant is $k_d=2$, $m_c=1$, and the sliding friction is $b_s=0.8$.

FIGURE E2.20 Precision slide.

Name ID			
	Name	$I\Gamma$)

Question 3 (10 marks)

A system is shown in Fig. E2.28(a).

- (a) Determine G(s) and H(s) of the block diagram shown in Figure E2.28(b) that are equivalent to those of the block diagram of Figure E2.28(a).
- (b) Determine Y(s)/R(s) for Figure E2.28(b).

FIGURE E2.28

NameID

Question 4 Simplify the following block diagrams.

4.1) (5 marks)

Name ID

4.2) (5 marks)

lama	I	$I \cap$	
varrie		טו	

Question 5 (5 marks)

The suspension system for one wheel of an old-fashioned pickup truck is illustrated in Figure P2.35. The mass of the vehicle is m_1 and the mass of the wheel is m_2 . The suspension spring has a spring constant k_1 , and the tire has a spring constant k_2 . The damping constant of the shock absorber is b. Obtain the transfer function $Y_1(s)/X(s)$, which represents the vehicle response to bumps in the road.

FIGURE P2.35 Pickup truck suspension.