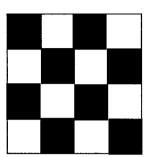
PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester II	Academic Year: 2005
Date:3 March 2006 Subject: 240-554 Image Processing	Time: 09.00-12.00
	Room: R300
Instructions:	
This exam has 6 problems, 7 pages, an	nd 55 points. Answer all questions on the
exam sheets. You may use the back of the page	ges for scratch work. This exam is open book.
Name:	Student code:
1 (10 pts)	5 (10 pts)
2 (15 pts)	6 (10 pts)
3 (15 pts)	7 (10 pts)
4 (10 pts)	8 (10 pts)
TOTAL	


1. Use the LZW coding algorithm to encode the following s numbers: 555555 (10 points)	sequence of 4-bit hexadecimal

2. Erosion of a set A by structuring element B is a subset of A as long as the origin of B is contained by B. Give an example in which the erosion $A \ominus B$ lies outside, or partially outside, A. (10 points)

3. Show that by applying a 1-D mask $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ follows by applying another 1-D mask $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ to an image yields the same result as applying a 2-D mask $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. (10 points)

4. The images shown are quite different, but their histograms are identical. Suppose that each image is blurred with a 3x3 smoothing mask, would the histogram still be identical after blurring? If your answer is no, sketch the two histogram. (10 points)

5. Consider a checkerboard image composed of alternating black and white squares, each of size $m \times m$. Give a position operator that would yield a diagonal co-occurrence matrix. (10 points)	

6. Under what conditions would you expect the major axis of a boundary to be equal to the	
eigen axes of that boundary? (5 points)	

----- End of Exam -----