# PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester 2

Academic Year: 2005

Date: March 3<sup>rd</sup>, 2006

Time: 13:30-16:30

Subject: 226-308 Modern Manufacturing Processes

Room: A401

#### Instructions

 A short-note of size A4 (both sides) written in your own hand-writing is allowed, and must be submitted with the answer book. (Duplicated note is not allowed)

- Dictionary and calculator are allowed.
- There are 7 parts in 12 pages.
- Answer all questions in the answer book.
- Total score is 45.
- Your answers could be in English or Thai.
- Please check all questions before start working.

|  | Name: | Student ID |
|--|-------|------------|
|--|-------|------------|

| Part  | Full Score | Assigned Score |
|-------|------------|----------------|
| ı     | 10         |                |
| ı II  | 5          |                |
| III   | 5          |                |
| IV    | 5          |                |
| V     | 5          |                |
| VI    | 5          |                |
| VII   | 10         |                |
| Total | 45         |                |

Mr.Srisit Chianrabutra

ทุจริตในการสอบโทษขั้นต่ำ คือ พักการเรียน 1 ภาคการศึกษา และปรับตกในรายวิชานั้น

8 rpt.

|         |    | <br> |  |
|---------|----|------|--|
|         |    |      |  |
| Student | ID | <br> |  |

# Part I: Introduction (10 Marks)

# Key words:

| slurry       | water       | velocity stream |
|--------------|-------------|-----------------|
| chemical     | thermal     | electrons       |
| vaporization | erosion     | photons         |
| etchant      | maskant     | plasma stream   |
| pressure     | temperature | jet stream      |

| 1.  | Ultrasonic Machining (USM): Abrasives contained in a are driven                        |
|-----|----------------------------------------------------------------------------------------|
|     | at high velocity against work by a tool vibration at low amplitude and high frequency. |
| 2.  | Water Jet Cutting (WJC): Uses a fine, high, high velocity stream of                    |
|     | water directed at work surface for cutting.                                            |
| 3.  | Abrasive Water Jet Cutting (AWJC): When WJC is used on metals, abrasive particles must |
|     | be usually added to                                                                    |
| 4.  | Abrasive Jet Machining (AJM): High of gas containing small                             |
|     | abrasive particles.                                                                    |
| 5.  | Electrochemical Machining (ECM): Electrical energy used in combination                 |
|     | with reactions to remove material.                                                     |
| 6.  | Electrical Discharge Machining (EDM): Metal removal by a series of discrete electrical |
|     | discharges (sparks) causing localized high enough to melt of                           |
|     | vaporize the metal.                                                                    |
| 7.  | Electron Beam Machining (EBM): Uses high velocity stream of                            |
|     | focused on workpiece surface to remove material by melting and vaporization.           |
| 8.  | Laser Beam Machining (LBM): Uses the high light energy from a laser to remove materia  |
|     | by and ablation.                                                                       |
| 9.  | Plasma Arc Cutting (PAC): Uses a for operating at very high                            |
|     | temperatures to cut metal by melting.                                                  |
| 10. | Chemical Machining (CHM): Material removal through contact with a strong               |
|     | chemical                                                                               |

- Sapopa

| Student | ID. | <br> | <br> |  |
|---------|-----|------|------|--|

#### Part II: Electrical Discharge Machining (5 Marks)

1. What is type of this EDM process? (1 Mark)



| 2. | Give 4 | samples of criteria for dielectric medium. (1 Mark) |
|----|--------|-----------------------------------------------------|
|    | a.     |                                                     |
|    | b.     |                                                     |
|    | C.     |                                                     |
|    | d<br>d |                                                     |

3. Explain a concept of this picture. (1 Mark)



|         |    | _ |
|---------|----|---|
| Student | ID |   |

| 4  | Give 2 | examples   | ٥f | limitation | in   | an | FDM | process  | 11 | Mark)    |
|----|--------|------------|----|------------|------|----|-----|----------|----|----------|
| →. | OIVE Z | CAGITIPICS | O1 | mmaaaon    | 11 1 | an |     | piocess. | ١. | INICILLY |

| a. |  |
|----|--|
| h  |  |

# 5. Calculate Wear Ratios of this data. (1 Mark)

| Volume of Electrode Material  Machined | Volume of Work<br>Material Worn Out | Wear Ratio |  |
|----------------------------------------|-------------------------------------|------------|--|
| 3 (cm) <sup>3</sup> /min               | 9 (cm) <sup>3</sup> /min            |            |  |

| Student | ID |  |
|---------|----|--|

# Part III: High Speed Machining (5 Marks)

|                  | and cusp                                                                                              | height goes down. (1 Mark)                                                                                         |
|------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Faster and light | er cutting can deliver a variety o                                                                    | f benefits to electrode machining as follo                                                                         |
| (1 Mark)         |                                                                                                       |                                                                                                                    |
| a                |                                                                                                       |                                                                                                                    |
| b                |                                                                                                       |                                                                                                                    |
| c                |                                                                                                       |                                                                                                                    |
| d                |                                                                                                       |                                                                                                                    |
| (1 Mark)         | st or spindle bearing's stiffness a                                                                   | and speed if used DN number criterion?                                                                             |
| Туре             | Diameter (mm.)                                                                                        | Spindle Speed (rpm.)                                                                                               |
| Α                | 30                                                                                                    | 65,000                                                                                                             |
| В                | 35                                                                                                    | 60,000                                                                                                             |
| _                |                                                                                                       | Aur                                                                                                                |
| Answer           | character commands 10 bits of o                                                                       | data. A serial connection with a baud ra<br>require 20 characters. If chord lengths                                |
| Answer           | character commands 10 bits of o                                                                       | data. A serial connection with a baud ra<br>require 20 characters. If chord lengths<br>rfast can it cut? (2 Marks) |
| Answer           | character commands 10 bits of o                                                                       | data. A serial connection with a baud ra<br>require 20 characters. If chord lengths<br>rfast can it cut? (2 Marks) |
| Answer           | character commands 10 bits of o                                                                       | data. A serial connection with a baud ra<br>require 20 characters. If chord lengths<br>rfast can it cut? (2 Marks) |
| Answer           | character commands 10 bits of o<br>second. A program block may<br>g in a fine-detail region, then how | data. A serial connection with a baud rate require 20 characters. If chord lengths a fast can it cut? (2 Marks)    |
| Answer           | character commands 10 bits of o<br>second. A program block may<br>g in a fine-detail region, then how | data. A serial connection with a baud rate require 20 characters. If chord lengths a fast can it cut? (2 Marks)    |
| Answer           | character commands 10 bits of o<br>second. A program block may<br>g in a fine-detail region, then how | data. A serial connection with a baud rate require 20 characters. If chord lengths a fast can it cut? (2 Marks)    |
| Answer           | character commands 10 bits of o<br>second. A program block may<br>g in a fine-detail region, then how | data. A serial connection with a baud rate require 20 characters. If chord lengths a fast can it cut? (2 Marks)    |

Supor

| Student | iD | <br>••••• |  |
|---------|----|-----------|--|

#### Part IV: Water Jet Cutting/Abrasive Water Jet Cutting (5 Marks)

| 1. | How to solve a "Jet Lag" problem in Water Jet Cutting/Abrasive Water Jet Cutting? (1 Mark)  |
|----|---------------------------------------------------------------------------------------------|
|    |                                                                                             |
|    |                                                                                             |
|    |                                                                                             |
|    |                                                                                             |
|    |                                                                                             |
| 2. | Water Jet Cutting and Abrasive Water Jet Cutting use the principle of pressurizing water to |
|    | extremely high pressures, and allowing the water to escape through a very small opening     |
|    | (typical called the "")(1 Mark)                                                             |
|    |                                                                                             |
|    |                                                                                             |

3. Comparing Water Jet Cutting/Abrasive Water Jet Cutting with Laser Cutting. (1 Mark)

| Advantages | Disadvantages |
|------------|---------------|
| a          | a             |
| b          | b             |

4. Comparing Water Jet Cutting/Abrasive Water Jet Cutting with Electrical Discharge Machining. (1 Mark)

| Advantages | Disadvantages |  |
|------------|---------------|--|
| a          | a             |  |
| b          | b             |  |

5. Comparing Water Jet Cutting/Abrasive Water Jet Cutting with Punch Press. (1 Mark)

| Advantages | Disadvantages |  |
|------------|---------------|--|
| a          | a             |  |
| b          | b             |  |

Supp

| Ctudont | ID.    |      |      |
|---------|--------|------|------|
| Student | יייטוו | <br> | <br> |

## Part V: Laser Machining (5 Marks)

| 1. | and are among the most important                                                       |
|----|----------------------------------------------------------------------------------------|
|    | industrial lasers. The works well with most metals, plastics, wood,                    |
|    | quartz, ceramics and glass. The works well with metals,                                |
|    | especially those that are highly reflective. (1 Mark)                                  |
|    |                                                                                        |
|    |                                                                                        |
| 2. | What are disadvantages of Laser Machining? (1 Mark)                                    |
|    | a                                                                                      |
|    | b                                                                                      |
|    |                                                                                        |
| 3. | is determined paticularly by the hole taper for laser drilling, kerf                   |
|    | geometry for laser cutting, and groove shape for three-dimensional machining. (1 Mark) |
|    |                                                                                        |
|    |                                                                                        |
| 4. | Laser cutting process is a cost effective process for prototyping and                  |
|    | since no physical tooling is needed.                                                   |
|    |                                                                                        |

5. Explain a concept of this picture. (1 Mark)



| Student | ID |
|---------|----|

### Part VI: Design for Machining (5 Marks)

1. Explain a concept of this picture. (1 Mark)



2. Explain a concept of this picture. (1 Mark)



8/12

3. Explain a concept of this picture. (1 Mark)



4. Explain a concept of this picture. (1 Mark)



Spir

|         |    | <br> |  |
|---------|----|------|--|
| Student | ID | <br> |  |

5. Explain a concept of this picture. (1 Mark)



Soop

| Student | ID | <br> |
|---------|----|------|

# Part VII: SMED & CIM (10 Marks)

| 1. | List 7 ty          | pes of waste. (2 Marks)                                                                                                                                        |
|----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | a.                 |                                                                                                                                                                |
|    | b.                 |                                                                                                                                                                |
|    | C.                 |                                                                                                                                                                |
|    | d.                 |                                                                                                                                                                |
|    | e.                 |                                                                                                                                                                |
|    | f.                 |                                                                                                                                                                |
|    | g.                 |                                                                                                                                                                |
| 2. | What is            | the meaning of external task? (1 Marks)                                                                                                                        |
| 3. | What is            | the meaning of internal task? (1 Marks)                                                                                                                        |
| 4. | Give 2<br>a.<br>b. | samples of reducing setup time. (1 Mark)                                                                                                                       |
| 5. | betwee             | finition of is: "All the work and time involved n making the last good product, batch or part to the next product, batch or part at efficiency/speed" (1 Mark) |
| 6. |                    | s the abbreviation of CIM? (1 Mark)                                                                                                                            |
| 7. | Give 2             | benefits of CIM. (1 Mark)                                                                                                                                      |
| •  | a.                 |                                                                                                                                                                |
|    | <br>h              |                                                                                                                                                                |

Sim

| 8. | What is the main problem of applying CIM system? (1 Mark) |
|----|-----------------------------------------------------------|
|    |                                                           |
| 9. | What is the meaning of "Mass Customization"? (1 Mark)     |
|    |                                                           |

Student ID.....

Sing