|                                                      | Prince of Songkla II                         | niversity                             |  |  |  |  |
|------------------------------------------------------|----------------------------------------------|---------------------------------------|--|--|--|--|
| Prince of Songkla University  Faculty of Engineering |                                              |                                       |  |  |  |  |
| Final Exa                                            | mination : Semester II                       | Academies Year : 2005                 |  |  |  |  |
| Date : Feb                                           | oruary 22, 2006.                             | Time: 09.00-12.00                     |  |  |  |  |
| Subject :2                                           | 26-318 Industrial Ceramics                   | Room: R300                            |  |  |  |  |
|                                                      |                                              |                                       |  |  |  |  |
| ทุจ                                                  | ริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้     | ้นและพักการเรียน 1 ภาคการศึกษา        |  |  |  |  |
| Instruction                                          | <b>:</b>                                     |                                       |  |  |  |  |
| 1.                                                   | Do all 21.                                   |                                       |  |  |  |  |
| 2.                                                   | The score appears at the end of question.    |                                       |  |  |  |  |
| 3.                                                   | Total score is 100.                          |                                       |  |  |  |  |
| 4.                                                   | Write your name and ID no. on pages 1 -3     | ) <b>.</b>                            |  |  |  |  |
| 5.                                                   | Your choices for problem no. 1-18 are sho    | own on pages 6-11. For the answer you |  |  |  |  |
|                                                      | have to put 4 letters which is corresponding | ng to the choice into                 |  |  |  |  |
| 6.                                                   | The answers must be done on pages 2 and      | d 3.                                  |  |  |  |  |
| 7.                                                   | Book, notes and calculator are allowed.      |                                       |  |  |  |  |

Name......ID.....

Asst. Prof.Sane Thanthadalugsana



- 1. How could the refractoriness under load of a ceramic body be found? (4)
- 2. What is spalling resistance? (4)
- 3. What is thermal shock? (4)
- 4. There are 2 ceramic bodies (A and B). The true porosity of A is less than B. Tell me about thermal conductivity and strength. (4)
- 5. How do you produce an insulating firebrick? (4)
- 6. How do you produce air-setting refractory mortar? (4)
- 7. What is aluminosilicate firebrick? (4)
- 8. How many types of carborundum product? What are they? (4)
- 9. How many types of industrial kiln? What are they? (4)
- 10. Why is the temperature difference between work piece and heating element in normal electric furnace smaller than in vacuum furnace? (4)
- 11. How is reducing atmosphere produced in gas-fired kiln? (4)
- 12. Why does eclectic kiln consume less energy than gas-fired kiln? (4)
- 13. Why don't ceramic factories use large electric-kilns to produce stoneware products? (4)
- 14. Why should you do bisque firing before glazing? (4)
- 15. How do you measure the temperature of a ceramic kiln during high firing? (4)
- 16. What is earthenware glaze? (4)
- 17. What is the difference between under glaze and over glaze colorant? (4)
- 18. Why should periodic kiln be lined with ceramic fiber? (4)
- 19. Given LPG of 11,000 kcal./kg.,600 lbs of silica chamotte, 15% of total efficiency and 1200-1300°C with in 2 hours.
  - (a) Find Qx in Kcal (6)
  - (b) How many kgs/hr of LPG should be? (5)



## 20. Given formula of a glaze as follows:

0.25 PbO

 $0.04~\mathrm{MgO} \quad 0.07~\mathrm{Al_2O_3} \quad 0.72~\mathrm{SiO_2}$ 

0.07 CaO 0.14 B<sub>2</sub>O<sub>3</sub>

Then the molecular formula from the above one is as below:

0.7 PbO

 $\mathbf{a} \quad \mathbf{MgO} \quad \mathbf{b} \ \mathbf{Al_2O_3} \qquad \mathbf{x} \ \mathbf{SiO_2}$ 

0.2 CaO d  $B_2O_3$ 

Find a, b, d and x .....(10)

21.

| Raw Mat.          | Moles  | M.W.  | Batch weight |
|-------------------|--------|-------|--------------|
| CaCO <sub>3</sub> | 0.7572 | 100   | 75.72        |
| MgCO <sub>3</sub> | 0.1135 | 84    | Y            |
| B-Feldspar        | X      | 596   | 76.94        |
| Kaolin            | A      | 258   | 59.13        |
| Silica flour      | В      | 60    | 93.44        |
|                   |        | Total | 314.76       |

Find X and Y .....(7)



| A B C D | Thermal conductivity of A should be higher but the strength is lower.                                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| B A C D | Thermal conductivity of A should be lower but the strength is higher.                                                               |
| C B A D | Thermal conductivity and the strength of A should be higher.                                                                        |
| D C B A | Thermal conductivity and the strength of B should be higher.                                                                        |
| B D E F | The firebrick whose raw material is mainly clay.                                                                                    |
| D B E F | The firebrick whose raw materials are mainly clay and silica.                                                                       |
| E D B F | The firebrick whose raw materials are silica and alumina.                                                                           |
| F D E B | The firebrick whose raw materials are fireclay and silica flour.                                                                    |
| C E F G | To let the cyclindrical specimen be pressed under 2 kgs/cm <sup>2</sup> at high temperature until the deformation occurs.           |
| E C G F | To press the specimen at 1300 °C and the pressure of 2 kgs/cm <sup>2</sup>                                                          |
| F G C E | To provide the pressure of 2 kgs/cm <sup>2</sup> over the specimen and record the high temperature at which the deformation occurs. |
| G F E C | To fire the specimen under 2 kgs/cm <sup>2</sup> pressure and record the temperature at which the crack begins.                     |



| E F R T The property of the body which could repeatedly resist high temperature                            |
|------------------------------------------------------------------------------------------------------------|
| changes.                                                                                                   |
| F E T R The property of the body which could resist abrasion at high temperature.                          |
| T F E R The property of the body which could resist thermal shock.                                         |
| E T R F The property of the body which could repeatedly resist cracking at high temperature.               |
| A G K L The power of normal one is larger.                                                                 |
| G A K L The power of normal one is smaller.                                                                |
| L A G K The normal one provides heat transfer through radiation and conduction but the vacuum one doesn't. |
| G L K A The normal one provides heat transfer through radiation but the vacuum                             |
| doesn't.                                                                                                   |
|                                                                                                            |
| E K J D The occurrence of large temperature change is immediately done.                                    |
| K E D J The large change of heating is suddenly done.                                                      |
| J K D E The large change of pressure is immediately done.                                                  |
| E J K D The large changes of temperature and pressure are immediately done.                                |



| C A Q D To fire the mixture of calcinated-clay, clay and sodium silicate.  |
|----------------------------------------------------------------------------|
| A Q D C To fire the mixture of clay and calcinated-clay.                   |
| Q D C A To mix calcinated-clay, clay and sodium silicate.                  |
| D A Q C To fire the body of clay calcinated-clay and combustible material. |
| A P K D Because of higher investment and power.                            |
| P A D K Because of lower efficiency production.                            |
| D P K A Because of higher investment and production rate.                  |
| K A P D Because of higher investment.                                      |
| J K P Q Lower production cost and higher production rate.                  |
| K J Q P Lower energy consumption and production rate.                      |
| P K J Q Higher product quality and lower cost.                             |
| Q P K J The lifetime of the kiln is longer.                                |
| A B P Q 2. Electric and gas fired.                                         |
| B A Q P 3. Electric, gas fired and charcoal fired.                         |
| Q B A P 2. Fiber lined and insulating firebrick lined.                     |



| J K F D 2. Chamotte and mortar.                                                           |
|-------------------------------------------------------------------------------------------|
| K J D F 3. Chamotte, mortar and silicon carbide.                                          |
| D K J F 2. Carborundum and carbon products.                                               |
| F D K J 2. Refrax and carbofrax.                                                          |
| U V S T To let small amount of air get into the kiln.                                     |
| V U S T To control amount of air.                                                         |
| S V U T To control amount of gas.                                                         |
| T S U V To let large amount of gas get into the kiln.                                     |
| T S X Y In electric kiln, the work piece need less energy.                                |
| S T Y X In electric kiln, heat loss is lower.                                             |
| Y X T S Gas-fired kiln provides lower efficiency.                                         |
| X Y S T Heat loss through chimney of gas-fired kiln is essential but electric kiln isn't. |
|                                                                                           |

2. Periodic and continuous ones.

 $P \mid Q \mid A \mid$ 



| P Q X Y To use pyrometric cone.                                           |
|---------------------------------------------------------------------------|
| Q P X Y To use thermometer.                                               |
| Y Q P X To use pyrometric cone or thermocouple and temperature indicator. |
| P X Y Q To use optical pyrometer.                                         |
|                                                                           |
| J Q R T To lessen defects of products.                                    |
| Q S T R To get the good ones.                                             |
| R Q S T To reduce the defects from bubbles.                               |
| T R J Q To decrease production cost.                                      |
|                                                                           |
| A D R T The glaze is matured around 650 – 1050 °C                         |
| D A R T The glaze is matured around 700 – 1000 °C                         |
| R D A T The glaze is matured around 650 – 1100 °C                         |
| T R D A The glaze is matured around 800 – 1200 °C                         |





| X | Т | V | R | The colorant of underglaze is used before bisque firing but the other is     |
|---|---|---|---|------------------------------------------------------------------------------|
|   |   |   |   | not.                                                                         |
| V | X | Т | R | The colorant of underglaze is used before glost firing but the other is not. |
|   |   |   |   |                                                                              |
| R | V | X | T | The colorant of underglaze is used before glazing and the other is           |
|   |   |   |   | painted after glost firing.                                                  |
| Т | R | V | X | The colorant of underglaze is painted after glost firing and the other is    |
|   |   |   |   | used before glost firing.                                                    |

