Name:	 Student ID #:	 Instructor:	_

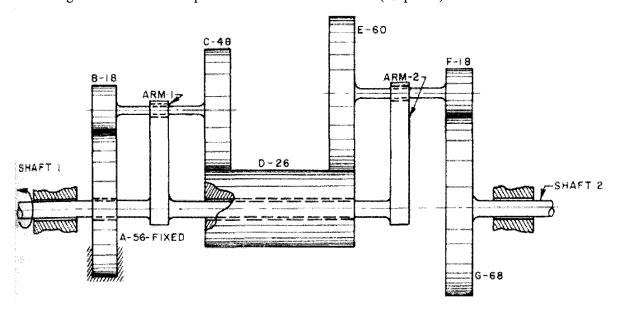
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 2 วันเสาร์ที่ 25 เดือนกุมภาพันธ์ พ.ศ. 2549 วิชา 215-324 : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา 2548 เวลา 13.30-16.30 น. ห้องสอบ R300

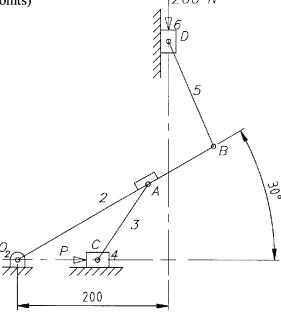
ทุจริตในการสอบ ปรับชั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

คำสั่ง

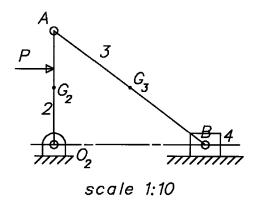

- 1. ข้อสอบมีทั้งหมด 4 ข้อ ให้ทำลงในข้อสอบทุกข้อ แต่ละข้อมีคะแนนเท่ากัน
- 2. อนุญาตให้ใช้เครื่องคิดเลขได้
- 3. ให้ใช้เครื่องมือเขียนแบบได้
- 4. ให้นำตำราเรียน (Theory of Machines and Mechanisms : 2nd Edition by Uicker) เข้าห้อง สอบได้ แต่ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

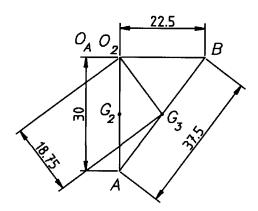
ช้ อ	คะแนนเต็ม	คะแนนที่ได้
1	25	
2	25	
3	25	
4	25	
รวม	100	


	Name:	Student ID #:	Instructor:
--	-------	---------------	-------------

1) A compound epicyclic gear train is as shown in the figure. Shaft 1 is driven at 300 rpm CCW (looking from the left end) and gear A is fixed to ground. The tooth numbers are indicated in the figure. Determine the speed and direction of shaft 2. (25 points)

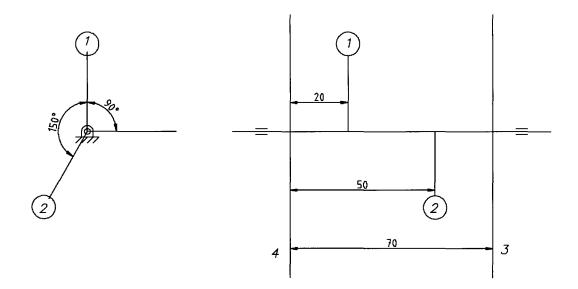

Name:	•	C44 TD 44	_	T 4 4	
Name :		Student ID # :	•	Instructor:	
runic.		σ	·	insulation.	

2) The mechanism shown below has $R_{AO2} = 200$ mm, $R_{AB} = 100$ mm, $R_{AC} = 150$ mm, and $R_{BD} = 120$ mm. At the position shown in the figure where $\theta_2 = 30^\circ$, a force of 200 N is applied vertically on link 6 as shown. Draw free body diagrams of each links (except link 1) and use graphical method to determine the force P acting on horizontally on link 4 to keep the mechanism in static equilibrium. Assume no friction. (25 points)



Name:	 Student ID # :	Instructor:

3) The slider crank mechanism shown with $\theta_2 = 90^\circ$ and a constant angular velocity $\omega_2 = 10$ rad/s CW. $R_{O2A} = 300$ mm, and $R_{AB} = 500$ mm. Masses $m_2 = m_3 = 1.0$ kg, and $m_4 = 2.0$ kg. Center of mass G_2 is 150 mm from end A, and of mass 3, G_3 , is 250 mm from end B. Moment of inertia $I_{G2} = I_{G3} = 0.05$ kg-mm². The velocity and acceleration diagrams are provided as shown. Determine the force P applied on link 2 at the distance 200 mm from O_2 to drive the mechanism as specified. Draw free body diagrams of link and use D'lambert principle to solve dynamic equilibrium. Assume no friction between slider 4 and the ground. (25 points)


 $O_v O_2$ B 10 mm : 1 m/s

 $1 \, mm : 1 \, m/s^2$

Name : Student ID # : Instructor :

4) The figure shows a system with two masses on a rotating shaft. If $m_1 = 0.1$ kg at 90° and radius $R_1 = 30$ mm, and $m_2 = 0.15$ kg @ 240° and radius $R_2 = 30$ mm. Determine the magnitude and direction of the balance masses needed to dynamically balance the rotor. The balance masses will be placed in planes 3 and 4 at a 30 mm radius. (25 points)

