Name:	Student ID
Nickname:	Group:

Prince of Songkla University Faculty of Engineering

Exam: Mid-Term, Semester I

Date: August 3, 2006

Subject: 230-391

Basic Chemical Engineering I

Academic Year: 2006 - 2007

Time: 1:30 - 4:30 PM

Room: A203

ทุจริตในการสอบโทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Instructions: There are a total of 5 problems and 8 pages (not including this page). Place your name and the student ID number on every page. Students are allowed to use <u>only</u> a pen or pencil and a calculator. They can also bring in 1 sheet of A4 front side only, a Conversions Table, and a Dictionary. No exams are allowed to leave the room.

Points Distribution (For Grader Only)		
Problem	Points Value	Score
1	15	
2	20	
3	20	
4	20	
5	25	
Total	100	

Exam prepared by Ram Yamsaengsung July 25, 2006

PLEASE CHECK TO MAKE SURE THAT
YOU HAVE ALL 8 PAGES OF THE EXAM BEFORE BEGINNING
(not including the cover sheet).
GOOD LUCK!

Prince of Songkla University **Faculty of Engineering**

Exam: Mid-Term, Semester I

Date: August 3, 2006

Subject: 230-391

Basic Chemical Engineering I

Academic Year: 2006 - 2007

Time: 1:30 - 4:30 PM

Room: A203

1. Convert the following to the given units: (15 Points)

(a) 400 Btu/(hr ft 2 °F) to W/(m 2 K) (5 points)

(b) 35.15 (L)(atm)/(gmol K) to (psia)(ft^3)/(lb-mol ${}^{\circ}$ R) (5 points)

(c) A bucket contains 20 lb of water. If the specific heat (C_p) of H_2O is 4.17 kJ/(kg °C), what is its enthalpy change (ΔH) if the temperature is increased from 30°C to 95°C. Give the answer in Btu. (5 points)

$$\Delta H = mC_p (T_2 - T_1)$$

 $g = 32.2 \text{ ft/s}^2 = 9.81 \text{ m/s}^2$ Constants:

 $g_c = 32.174 \text{ ft-lb}_m/(\text{lb}_f\text{-s}^2)$ $1 \text{ cp} = 1 \text{ x } 10^{-2} \text{ g/(cm-s)}$ $1 \text{ psia} = 1 \text{ lb}_f/\text{in}^2 = 6.89476 \text{ kPa}$

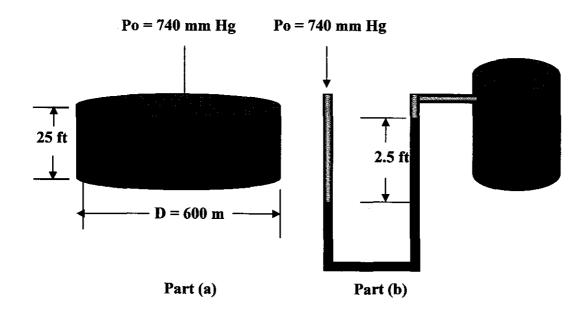
1 K = 1.8°R

 $\rho_{\rm H2O} = 62.4 \, \rm lb_m/ft^3 = 1 \, g/cm^3$

 $11b_{\rm m} = 0.454 \text{ kg}$

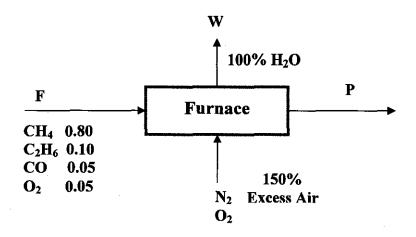
1 ft = 0.3048 m 1 m³ = 264.172 gal

 $1 \text{ Pa} = 1 \text{ N/m}^2 = 1 \text{ kg/(m-s}^2)$

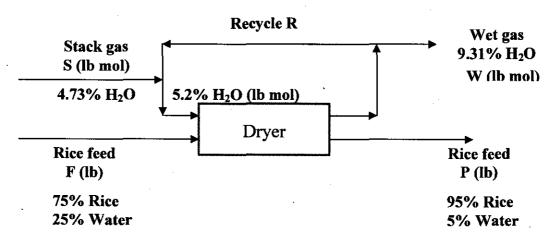

 $1^{\circ}C = 1.8^{\circ}F$

1 J/s = 1 W (Watt)

Equations: Pressure = Force/Area

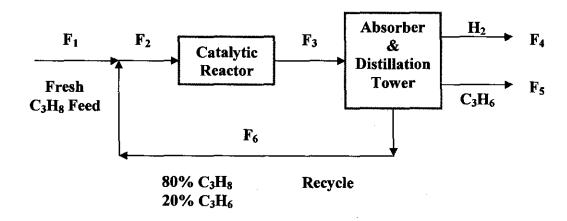

Static Pressure: $P = \rho g h + P o$

- 2. From the figures below, answer the following questions. (20 Points)
 - (a) What is the total force exerted on the bottom of reservoir in Newton? (10 points) (Hint: Determine the total pressure at the bottom of the reservoir in Pa units.)
 - (b) What is the pressure inside the storage tank in psig if water is used as the fluid inside the manometer? (10 points)


3. A mixture of 80% CH₄, 10% C₂H₆, 5% CO and 5% O₂ is burned in a furnace with 150% excess air. If no CO, CH₄, and C₂H₆ leave the furnace, determine the following information:

(20 points)

- (a) The moles of air entering the furnace (10 points)
- (b) The moles of water produced (5 points)
- (c) The Orsat Analysis of the flue gas (5 points)


4. To save energy, stack gas from a furnace is used to dry rice. The flow sheet and known data are shown below. What is the amount of recycle gas (in lb mol) per 100 lb of P if the concentration of water in the gas stream entering the dryer is 5.2%? (Hint: Do a mass balance for Rice and Water. Then, do mole balances for water and gas.) (20 points)

5. The process shown in the figure below is the dehydrogenation of propane (C₃H₈) to propylene (C₃H₆) according to the reaction.

$$C_3H_8 \rightarrow C_3H_6 + H_2$$

The conversion of propane to propylene based on the total propane feed into the reactor at F_2 is 60%. The product flow rate F_5 is 50 kg mol/hr. Calculate all the six flow rates F_1 to F_6 in kg mol/hr. (25 points)

