PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination : Semester I

Academic Year: 2006

Date: 5 August 2006

Time: 09.00 - 12.00

Subject: 230 - 463 Polymer Technology

Room: A400

~	773	
Student Name:	II) no '	
Student Maine,		

Number of questions: 5

Time: 3 hours

Total marks: 110

Notes are not allowed

Calculators are allowed

Question	Full Marks	Marks Received
1	15	
2	25	
3	25	
4	20	
5	25	
Total	1 10	

ทุจริตในการสอบโทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Student Name ID no	Student Name	********************************	ID no.	
--------------------	--------------	----------------------------------	--------	--

- 1. a) Write the repeating units of the following polymers: polyester, polyamide, polystyrene and poly methyl methacrylate.
 - b) Explain the meaning of a structural unit in a step polymer.
 - c) Explain the number fraction of x-mer in linear step-polymers in terms of structural units.
 - d) For linear step polymers, the number distribution and the weight distribution of x-mers are given by:

$$N_{x}^{*} = p^{x-1} (1-p)$$

$$w_x = x (1-p)^2 p^{x-1}$$

where N_x = number fraction of x-mer

w_x = weight fraction of x-mer

Plot w_x against x for p =0.92 and 0.97.

Compare and explain the effects of p on molecular weight.

(15 marks)

Answer to Q1

Student Name:	 ID no.	:

Answer to Q1.(continued)

Q1d)
Graph for plot of distribution curves

1	!						
1	l I	1	ł			į.	i
ř l			ſ			[l
1		1	1	1		i	ı
1	l		1	!			ı
<u> </u>			L	L			
1	1		l				I
		1	ı				ı
	1	1	ı				ı
			ı		t .		ı
1	1		l		f		I
-							
	1		l		1		I
1	1		l				I
		. '	1	ì	1 '	1)
1			1	I		l)
1			1	I		l	ŀ
							L
1			I			r —	
1	l .		I	I			I
1	F		į.	I		f	I
1	I		I	I		1	1
1	I		i	I		1	(
1	I	1	1	I	1	1	1
							
1 :	1	1	1	,			1 -
1 1	1		l	ļ	ι	l	l .
1	1	1	1	1		l	1
1			1	1	i .	l	1
1		1	1	I	F	l	1
				L			
1			1	I		l	1
i			1	ı	1	l	,
1			1	I		l	,
1	Į.		!	I *		Į.	F
!	l		1	I			1
1	l		I	;		i	1
	(6	1	ŧ.	1	ì	ì
1	1	l.	1	ŀ		l	1
1	1		1	Į.		l	1
1			1	l		l	
						L	
		1					
i		ì	1	i		l	ı
1			1	1]	l	1
1			1	I	1	l	1
1	ı		I	I		I	ı
1	Ι.		Į.	I		I	l
							,
1	ſ	l	t	l	1	ţ	1
1	ì	1	1	I	I	1	4
1	1	I	ŀ	I	I	1	t
ı	1	I .	4 .	I	I	J	ì
1	1	F	,	Į.	I	ì	ı
					l		
1	ı	I		f	l .	I	I
1	ı	1	1	1	ľ	I.	ı
1	ı	1	I	!	ŧ	ľ	I
1	ı	I	I	1	1	I	ı
1	ı	i	I	1	1	I	ı
1							

Student Name: ID no.:.....

2. a) In the stepwise polymerization of two monomers adipic acid, HOOC-(CH_2)₄-COOH and ethylene glycol, HO-(CH_2)₂-OH it was planned to add both reactants in stoichiometric amount. If the adipic acid contains 2% monocarboxylic acid, calculate the \overline{x}_n and \overline{M}_n of the polymer formed when p=1.0.

Note that:

In the reaction of monomer types A-A and B-B with an excess of functional group type B the number-average degree of polymerization is given by

$$\frac{1}{x_n} = \frac{1+r}{1+r-2rp}$$

where r= ratio of the functional types in which $r\leq 1$ p= extent of reaction of the functional group type A $\qquad \qquad (\ 10\ marks)$

- b) A polymerization system contains of 1 mol of a diol, 2 mol of triol and 4 mol of diacid.
 - 2b.1 Calculate gelation by reaction stoichiometry. Note that:

$$p = \frac{2}{f_{av}} - \frac{2}{\overline{X}_n f_{av}}$$

2b.2 Calculate gelation by statistics and branching coefficient, $\alpha_{\rm c}$.

Note that:

$$\alpha_{\rm c} = \frac{1}{(f-1)} = \frac{{\rm rp}_{\rm c}^2 \rho}{1 - {\rm rp}_{\rm c}^2 (1 - \rho)}$$

f = functionality of the branch unit

$$\rho = \frac{\text{Number of F.G. type A in branch unit}}{\text{Number of F.G. type A in reaction mixture}}$$

Student Name: ID no.:.....

$$r = \frac{\text{All number of F.G. type A}}{\text{All number of F.G. type B}} = \frac{N_{\text{A}}}{N_{\text{B}}}$$

2b.3 Compare and comment on the values obtained in 2b.1 and 2b.2.

(15 marks)

Answer to Q2.

Student Name: ID no.:.....

3. One hundred litres of acrylonitrile is bulk polymerized at 60°C with 4 g of dibenzoyl peroxide. The density of liquid acrylonitrile monomer is 0.8 g/cm³ and its molecular weight is 53 g/mole. The density and molecular weight of the dibenzoyl peroxide are 0.87 g/cm³ and 250 g/mole. Termination occurs only by combination. The rate constants are:

$$k_{e} = 3.0 \times 10^{-6}$$
 s⁻¹
 $k_{p} = 1.0 \times 10^{3}$ L mol. ⁻¹ s⁻¹
 $k_{t} = 3.0 \times 10^{7}$ L mol. ⁻¹ s⁻¹
initiator efficiency, f = 0.4

- 3.1 Calculate the steady-state concentration of free radicals.
- 3.2 Calculate $\overline{\mathbf{M}}_{n}$ of the polymer formed.
- 3.3 Calculate the amount of polymer formed in the first 5 hours of reaction.
- 3.4 If there is chain transfer to monomer also occurs in the reaction suggest how you would estimate the \overline{M}_n .

Note that:

initiator half life =
$$\frac{ln2}{k_d}$$

$$- \frac{d [M]}{dt} = \frac{k_p}{k_t^{1/2}} (fk_d [I])^{1/2} [M]$$

-
$$\ln \frac{[M]}{[M]_0} = \frac{k_p}{k_1^{1/2}} (f.k_d [I])^{1/2}.t$$

$$v = \frac{k_{p} [M]}{2 (fk_{d}k_{t} [I])^{1/2}}$$

(25 marks)

	Student Nam	ne: ID no. :	
4.	a) Would you expect the	e glass-transition temperatures of polymeth	nyl methacrylate
	and natural rubber to	be higher or lower than room temperature	e? Why?
			(2 marks)
	b) Explain the effect of	temperature on the kinetic chin length in a	free radical chain
	polymerization.		
			(2 marks)
	c) What is the effect of	chain transfer on molecular weight and mo	lecular weight
	distribution in chain	polymerization?	
		,	(2 marks)
	d) Why is chain transfe	r to solvent more important than chain trans	sfer to initiator in a
	free radical reaction	?	
			(2 marks)
	e) Explain the effect of t	emperature on rate of anionic polymerizati	on.
			(2 marks)
	f) Write schematic read	ctions and an expression for $\frac{-}{\mathbf{x}_n}$ of cationic	polymerization.
			(4 marks)
	g) Why block copolyme	ers can not be formed by free radical polym	nerization?
			(2 marks)
	h) A pair of monomers I	M, and M ₂ forms an azeotropic copomer at	$f_1 = 0.4$. Explain
	how you would estin	nate the copolymer composition formed at	the reaction time of
	1 second and anoth	er composition formed at 1 hour later if the	feed composition f ₁
	is 0.2.		
			(4 marks)

Student Name:	ID no.	•
Claudin I land.	 III.	. ,

- 5. Vinyl acetate (monomer 1) at 3.5 mol. L^{-1} and vinyl chloride (monomer 2) at 1.5 mol. L^{-1} concentration are copolymerized in the reactor at 60° C in benzene solution. The free radical reaction is initiated by adding 0.1 mol. L^{-1} of azobisisobutyronitrile. The reactivity ratios are $r_1 = 0.23$ and $r_2 = 1.68$.
 - 5.1 Plot F₁ vs. f₁ on the provided graph on page 14. What is the copolymer structure?
 - 5.2 Calculate the copolymer composition (in mole percent) formed at an early stage of the reaction.
 - 5.3 Will a composition drift occur? Why?
 - 5.4 If the average length of M_1 in the copolymer, \overline{m}_{M_1} , is the average number of M_1 in each same repeating M_1 , calculate \overline{m}_{M_1} .

Would you expect the average length of M_2 in the copolymer, \overline{m}_{M_2} , to be longer or shorter than \overline{m}_{M_1} ? Why?

Note that:

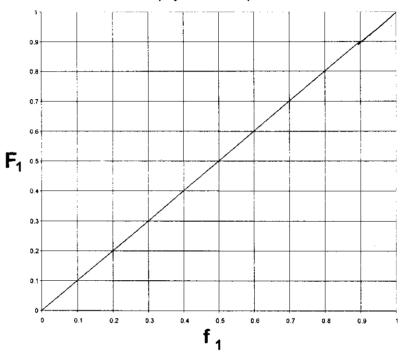
average length of $M_{_1}$ in the copolymer = $\overline{m}_{M_1} = 1 + \ r_i \, \frac{[M_1]}{[M_2]}$

$$\frac{d[M_1]}{d[M_2]} = \frac{[M_1](r_1[M_1] + [M_2])}{[M_2]([M_1] + r_2[M_2])}$$

$$F_1 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2}$$

$$(f_1)_c = \frac{1 - r_2}{2 - r_1 - r_2}$$

(25 marks)


_____ End of Question

Student Name: ID no.:.....

Answer to Q5.

Graph paper for Question (5.1)

Copolymer-feed composition

