PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester I Academic Year: 2006

Date: August 3, 2006 Time: 9:00-12:00

Subject: 230-620 Advanced Engineering Room: A401

Kinetics and Chemical Reactor Design

อนุญาตให้นำเอกสารและเครื่องคำนวณทุกชนิดเข้าห้องสอบได้ ทุจริตในการสอบโทษขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการศึกษา 1 ภาคการศึกษา

Please do all 4 questions. Show all your work to receive full or partial credit. Total score is 160. (Total page 3, including first page)

Question #	Total Score	Score
1	50	
2	40	
3	40	
4	30	
Total	160	· ·

สุกฤทธิรา รัตนวิไล ผู้ออกข้อสอบ

Micro kinetics and Catalysis

- 1. Propose the mechanisms and find out reaction rate for the following reaction: Please define all parameters that you need (50 scores)
 - 1.1 A \rightarrow B + C :Using Langmuir Hinshelwood Model (10 scores)
 - 1.2 A + $2B_{(g)} \rightarrow C$: Using Eley-Rideal Mechanism Model (10 scores)
 - 1.3 Using Pseudo Steady State Hypothesis: (10 scores)

$$A + (S) \xleftarrow{k_1 k_2} A(S)$$

$$C_2 + 2(S') \xleftarrow{k_2 k_2} 2C(S')$$

$$A(S) + C(S') \xrightarrow{k_3} P(S) + (S')$$

$$P(S) \xleftarrow{k_2 k_3} P + (S)$$

S and S' are different active sites

k₁, k₃, k₅, k₆ as forward reaction rate constant

k2, k4, k7 as backward reaction rate constant

- 1.4 A \rightarrow B + C :Propose **ONE mechanism** which can explain reaction rate of A at both law and high pressures (20 scores)
 - a. at low pressure, $r_A = k[A]^2$
 - b. at high pressure, $r_A = k'[A]$

Macro kinetics and analysis data

2. A study of methane oxidation over iron phosphate with hydrogen present in a feed gas. High selectivity to methanol was observed under these conditions at low conversions. The role of H₂ was thought to be in generation of new surface sites active for methanol formation. (40 scores)

$$CH_4 \xrightarrow{o_1,k_1} CH_3OH \xrightarrow{o_2,k_2} CH_2O \xrightarrow{o_2,k_3} CO \xrightarrow{o_2,k_4} CO_2$$

Oxygen is a feed gas in all reactions. Consider only data taken in the presence of hydrogen, propose and defend a reaction network for all species in a plug flow reactor. Using data in Tables A evaluate all of the parameters in the first reaction at 713 K.

Table A. Effect of methane partial pressure on methane conversion rate, T = 713K, Pressure of $H_2 = 50$ kPa, Pressure of $O_2 = 8.4$ kPa, W/F = 0.208 g h/dm³.

Pressure of CH ₄ (kPa)	Rate x 10 ³ mol (g h) ⁻¹
8.3	2.0
12.4	2.5
17.2	2.8
25.5	4.1
34.5	4.7
42.8	5.3

Catalyst and reaction rate

3. Using differential reactor to study the formation of methane from H₂ and CO over nickel catalysts showed reaction rate as following: (40 scores)

$$r_{cu_{\bullet}} = \frac{0.0183 P_{u_{\bullet}}^{0.5} P_{co}}{1 + 1.5 P_{u_{\bullet}}} \text{ mole/(g.cat s)}$$

Propose a mechanism and rate determination step that is consistent with experimental data. Reactor is desired to produce 20 tons/day of CH₄. Calculate the catalyst weights necessary to achieve 80% conversion in CSTR. The feed consists of 75% H₂ and 25% CO at a temperature of 500°F and a pressure of 10 atm.

Suggested mechanism is:

$$H_{2} + (S) \longleftrightarrow_{s_{1},k_{2}} H_{2}(S)$$

$$H_{2}(S) + (S) \longleftrightarrow_{s_{2},k_{1}} 2H(S)$$

$$H(S) + CO \longleftrightarrow_{s_{2},k_{2}} CHO(S)$$

$$CHO(S) + H(S) \longleftrightarrow_{s_{2},k_{2}} C(S) + H_{2}O + (S)$$

$$C(S) + 2H_{2} \longleftrightarrow_{s_{2},k_{2}} CH_{2} + (S)$$

k₁, k₃, k₅, k₇, k₉ as forward reaction rate constant k₂, k₄, k₆, k₈, k₁₀ as backward reaction rate constant

Conceptual knowledge

- 4. Answer the following questions in THAI LANGUAGE based on your understanding: (30 scores)
 - 4.1 In class, we discussed a lot about how to find out an actual reaction rate from experimental data. Now you have a bimolecular molecule reaction in a batch reactor and would like to correct data to get reaction rate parameter. Please
 - suggest: How you correct the data from experiment?
 - Which analytical method you expect to use?
 - How do you solve for these parameters?
 - Can I use method of half-lives to solve? Explain (20 scores)
 - 4.2 Write an algorithm for determining reaction mechanism and rate-determining step (10 scores)