Name:	Student ID # :	Instructor:
	คณะวิศวกรรมศาสตร์	
	มหาวิทยาลัยสงขลานครินทร์	

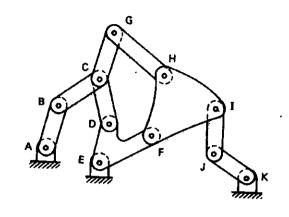
การสอบกลางภาค ประจำภาคการศึกษาที่ 1 วันอาทิตย์ที่ 6 สิงหาคม พ.ศ. 2549

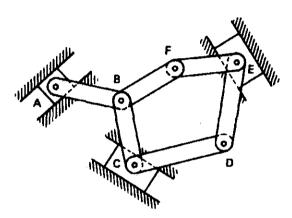
วิชา 215-324 : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา 2549 เวลา 9.00-12.00 น. ห้องสอบ R200

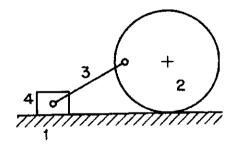
ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

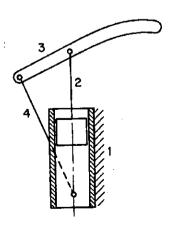
คำสั่ง

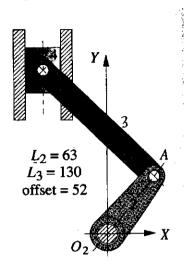

- 1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำลงในข้อสอบทุกข้อ และทุกข้อมีคะแนนเท่ากัน
- 2. อนุญาตให้ใช้เครื่องคิดเลขได้
- 3. ให้ใช้เครื่องมือเขียนแบบได้
- 4. อนุญาตให้นำกระดาษขนาด A4 จำนวน 1 แผ่นเข้าห้องสอบได้ แต่ไม่อนุญาตเอกสารอื่น ๆ


รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร อ.ประกิต หงษ์หิรัญเรื่อง ผู้ออกข้อสอบ

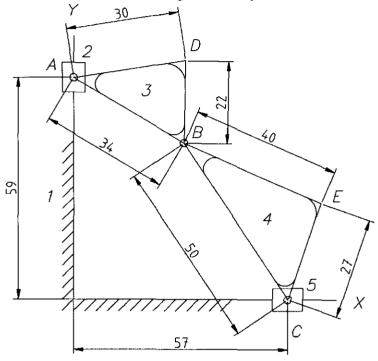
ข้อ	คะแนน
1	
2	
3	
4	
5	
รวม	


Name	•	Student ID #:	Instructor:


1) (a) Determine the mobility (degrees of freedom) of the following mechanisms.

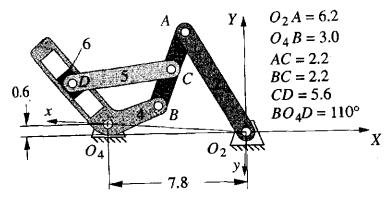

(b) Locate all the poles of the following mechanisms with mobility 1.

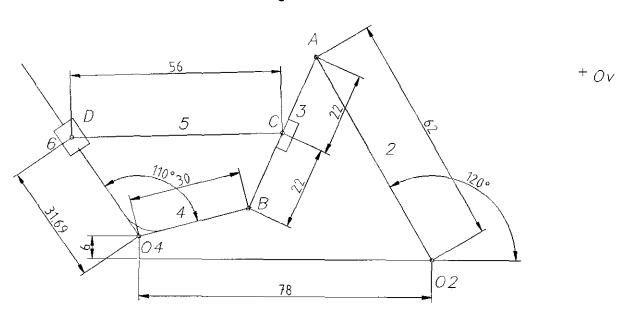
Name:	 Student ID # :	Instructor:


2) The offset-slider-crank mechanism shown has a 63 mm long crank (link 2) and a 130 mm long connecting rod (link 3). The slider offset is 52 mm from Y-axis. Determine (a) the stroke of the slider, and (b) the time ratio between the advanced stroke and the return stroke, if the crank rotates clockwise with a constant speed. (Hint: You need to do position analysis at both toggle positions. Use scale 1: 2)

Offset slider crank

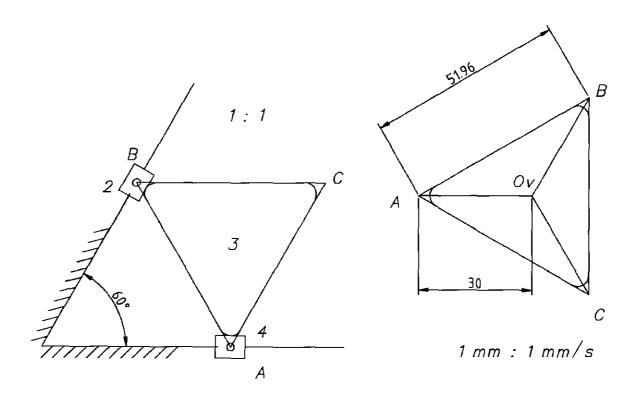
Name:	 Student ID # :	Instructor:


3) The mechanism shown below has 2 degrees of freedom. AB = 34 mm, AD = 30 mm, BD = 22 mm, BC = 50 mm, BE = 40 mm, and CE = 27 mm. At the position shown A is 59 mm on Y axis and C is 57 mm on X axis, away from the origin. The velocity of link 2 is 50 mm/s downward and the velocity of link 5 is 50 mm/s to the right. Use the scale of 1 mm: 1 mm/s to solve graphically for the velocity of point B and draw the velocity images of link 3 and 4. Also determine the angular velocity of link 3.


Ov +

tune: natractor:	Name:	Student ID # :	Instructor:
------------------	-------	----------------	-------------

4) The six-bar linkage shown with dimension in inches. The position analysis when link 2 is 120° ccw from X axis is provided with scale 10 mm: 1 in. At this position link 2 has an angular velocity of 5 rad/s ccw. Use graphical method with scale 1 mm: 1 in/s to determine the velocity of point D, and the angular velocity of link 6, using graphical method.



Sixbar linkage

Name	Name:		Instructor:
------	-------	--	-------------

5) For the mechanism shown, AB = BC = AC = 50 mm. At this position AB is 120° ccw from x-axis. Point A at this instant has a velocity of 30 mm/s to the left and an acceleration of 60 mm/s² to the left. The velocity polygon of the mechanism is also shown. Determine graphically the acceleration of point C and the angular acceleration of link 3. (Use scale 1 mm: 1 mm/s².)

⁺ 0a