มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

สอบปลายภาค ประจำภาคการศึกษา 1	ปีการศึกษา 2549
วันที่ 13/10/ 2549	เวลา 9.00 —12.00 น.
วิชา 221-381: Computer Applications in G	Civil Engineering
ห้องสอบ A201	
ชื่อ-สกุล	รหัส

คำขึ้แจง

- 1.ข้อสอบทั้งหมดมี 6 ข้อ คะแนนรวม 180 คะแนน คังแสคงในตารางข้างล่าง
- 2.ข้อสอบมีทั้งหมค 3 หน้า (ไม่รวมปก)
- 3.ให้ทำหมคทุกข้อลงในสมุคคำฅอบ
- 4.ห้ามนำเอกสารใคๆ เข้าห้องสอบ ทุ**งริตจะได้ E**
- 5.อนุญาตให้ใช้เครื่องถิคเลขได้ทุกชนิด
- 6.กระคาษทคที่แจกให้ไม่ค้องส่งคืน ถ้าไม่พอขอเพิ่มที่อาจารย์คุมสอบ
- 7.ห้ามหยิบ หรือยืมสิ่งของใคๆ ของผู้อื่นในห้องสอบ
- 8. อนุญาตให้นำ Dictionary เข้าห้องสอบได้
- 9. GOOD LUCK

<u>ตารางคะแนน</u>

ข้อที่	คะแนนเต็ม	ได้
1	30	
2	30	
3	30	
4	30	
5	30	
6	30	
รวม	180	

Asst. Prof. Dr. Suchart Limkatanyu

Problem 1 (30 Points)

The shear stress, in kips per square foot (ksf), of nine specimens taken at various depths in clay stratum are:

Depth, m	1.9	3.1	4.2	5.1	5.8	6.9	8.1	9.3	10.0
Stress, ksf	0.3	0.6	0.4	0.9	0.7	1.1	1.5	1.3	1.6

Fit a straight line to the data with linear regression (Least Square) and estimate the stress at the depth of 4.5 m.

Problem 2 (30 Points)

Let $f(x) = (1-x^2)^2$ for $-1 \le x \le 1$. Find a cubic polynomial that passes through the points (-1, f(-1)), (0, f(0)), and (1, f(1)), and also the first derivative of this polynomial equals, f'(0) at x = 0.

Problem 3 (30 Points)

- (a) What is the definition of a cubic spline interpolation? Give a set of boundary conditions that can uniquely determine a cubic spline interpolation.
- (b) The following data was taken from an experimental that measured the current in a wire for various imposed voltages:

Voltage, V	3	4.5	7	9
i, A	2.5	3	4	6

Fit these data with first-order (linear) spline and evaluate the current for a voltage of 6V.

(c) From the data in (b), fit these data with the Lagrange Polynomial Interpolation and evaluate the current for a voltage of 6V.

Problem 4 (30 Points)

The deformation of the axially loaded member shown below is completely defined by the differential equation:

$$\frac{\partial u}{\partial x} = \frac{N(x)}{A(x)E(x)}$$

where u is Axial Displacement; N(x) is axial force applied; E(x) is Young's modulus of elasticity; and A(x) is cross-sectional area.

Determine the relative displacement of Point A with respect to Point B if this problem can be easily solved by integrating the following expression:

$$u_A - u_B = \int_0^{120} \left(\frac{dx}{\frac{-30}{36} x^2 + 100x + 3000} \right)$$

- (a) Employ the Composite Trapezoidal Rule of Integration to perform this integration, using h = 10 in.
- (b) Employ the Composite Simpson's 1/3 Rule of Integration to perform this integration, using h = 30 in.

Trapezoidal Rule:

$$I = \left(x_{i+1} - x_i\right) \left\lceil \frac{f\left(x_{i+1}\right) + f\left(x_i\right)}{2} \right\rceil$$

Simpson's 1/3 Rule:

$$I = (x_{i+2} - x_i) \left[\frac{f(x_i) + 4f(x_{i+1}) + f(x_{i+2})}{6} \right]$$

Problem 5 (30 Points)

Determine the values of the constants $\alpha_0, \dots \alpha_3$, so that the integration rule

$$\int_{0}^{1} f(x) dx = \sum_{i=0}^{3} \alpha_{i} f(i/3)$$

is exact for all polynomials of degree ≤ 3 .

Problem 6 (30 Points)

- (a) What is major difference between the Regression and Interpolation?
- (b) What is the main advantage of the Spline interpolation scheme?
- (c) What is the main feature of the Lagrange Polynomial?