PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination : Semester I	Academic Year : 2006

Date : 10 October 2006 Time : 09.00 – 12.00

Subject: 230 - 463 Polymer Technology Room: A400

Ctudant Mama:	ID 200	•
otudent name.	 יטוו טו.	

Number of questions: 4

Time: 3 hours

Total marks: 120

Notes are not allowed.

Calculators are allowed.

Two graph papers are provided.

Question	Full Marks	Marks Received
1	30	
2	45	
3	25	
4	20	
Total	120	

ทุจริตในการสอบโทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

 a) Describe production of homo-polypropylene and impact polypropylene by BASF process.

(5 marks)

- b) Give the reasons for the differences in transition temperatures for the following pairs of polymers.
 - b.1) T_g for polypropylene and polyacrylonitrile
 - b.2) T_m for high molecular weight polyethylene and poly (p-xylene) with structure --(CH_2 -Ø- CH_2)- where is a ring.
 - b.3) T_a for cis-1,4-polybutadiene and trans-1,4-polybutadiene

- b.4) T_m for -(CH₂CH₂CONH)-_n and -(CH₂CH₂CH₂CONH)-_n
- b.5) T_g for polymethyl methacrylate and poly n-butyl methacrylate (10 marks)
- c) What are the parameters used in determination of degree of crystallinity of a solid polymer? How can you estimate the values of these parameters?
 (5 marks)
- d) Discuss the effect of cooling rate in the experiment for determination of T_g . (5 marks)
- e) Explain the folded chain model for a single crystal of polyehtylene. (5 marks)

Answers to Question 1

Student Name: ID no.:.....

2. a) Describe the experimental steps used for determining viscosity-average molecular weight $\overline{M}_{\,\rm v}\,$ of a polymer sample.

Describe how \overline{M}_{ν} is determined.

(10 marks)

b) A sample of a polypropylene analyzed by the gel permeation chromatography method provided the following data:

M_i	W_{i}
3,000	0.04
8,000	0.19
18,000	0.43
30,000	0.15
45,000	0.08
58,000	0.06
75,000	0.05

Calculate the weight-average molecular weight \overline{M}_w and the number-average molecular weight \overline{M}_n . Sketch a distribution curve (weight fraction versus molecular weight). Calculate the polydispersity index.

N _A = Avogadro number

$$N_{i} = \left\{ \frac{W_{i}}{M_{i}} \right\} \times N_{A}$$

$$N_i M_i = w_i N_A$$

$$\overline{M}_{n} = \frac{\sum_{i} N_{i} M_{i}}{\sum_{i} N_{i}}$$

$$\overline{M}_{w} = \frac{\sum_{i} C_{i} M_{i}}{\sum_{i} C_{i}} = \sum_{i} w_{i} M_{i} = \frac{\sum_{i} N_{i} M_{i}^{2}}{\sum_{i} N_{i} M_{i}}$$

(15 marks)

Student Name: ID no.:
c) Sketch and explain the time-temperature superposition principle on a plot of
stress vs. temperature for a polymer which has $T_{\rm g}$ of 273 K. Explain how the
amount of shift can be estimated.
(5 marks)
d) Explain a mechanical model that can explain the stress relaxation behaviour of
real polymer.
(5 marks)
e) Explain the experimental plot and the test method that can determine the
optimum amount of plasticizer in polyvinylchloride.
(5 marks)
f) Sketch and explain the plot of shear stress vs. strain rate for a real polymer
melt.
(5 marks)
Answers to Question 2

Student Name: ID no.:

3. In the extrusion process for polymeric pipe, the extruder screw geometry is as follows. The axial flight land width is 2 mm, the channel depth is 10 mm, the screw diameter is 120 mm, flight helix angle is 17° and the screw length is 1800 mm. The screw speed is 100 rev/min, and the pressure varies linearly over the screw length from the hopper to the die. The leakage flow is negligible.

An annular die with dimensions $D_o = 15$ mm, $L_o = 30$ mm. and $\delta_o = 4$ mm. is fixed to the end of the extruder. The screw metering zone and the annular die temperatures are at 220°C and the melt viscosity and density at this temperature are 218 Ns/m² and 1420 kg/m³ respectively. Calculate the extruder output and die output at pressures 15 and 30 MN/m². Plot the characteristic curves for screw and die using Q and P in kg/h and MN/m² respectively. Read the operating point on the graph. (N is Newton, MN is mega Newton or 10^6 N)

For annular die, the die output is given by

$$Q_{d} = \frac{\pi D_{0} \delta_{0}^{3}}{12L_{0}} \bullet \frac{\Delta P_{d}}{\eta}$$

Student Name: ID no.:......

Output = drag flow + pressure flow + leakage flow

output
$$Q = Q_D + Q_P + Q_L$$

(โดย $Q_{\scriptscriptstyle p}$ และ $Q_{\scriptscriptstyle L}$ มีค่าเป็นลบ มีทิศทางสวนทางกับ $Q_{\scriptscriptstyle D}$)

drag flow
$$Q_D = \frac{1}{2} \pi^2 D^2 NH \sin \theta \cos \theta$$

pressure flow
$$Q_P = -\frac{\pi DH^3 \sin^2 \theta}{12 \eta} \frac{dP}{dl}$$

leakage flow
$$Q_L = -\frac{\pi^2 D^2 c^3}{12 \eta e} \tan \theta \frac{dP}{dl}$$

N = screw speed, rpm

 θ = มุมเกลียว, helix angle

 δ หรือ C = ช่องว่างระหว่าง screw กับ barrel ตามแนวรัศมี (radial screw clearance)

e = ความกว้างของ screw land ตามแนวแกน (axial flight land width)

H = ความลึกของพันเกลียว (flight depth)

D = diameter ภายในของ barrel

η = viscosity ของ polymer melt

s = flight pitch, ระยะฟันเกลียว

(25 marks)

Student Name: ID no. :														
4.	a)	Describe	the	ther	moforming	ı pr	ocess	for	the	rmoplas	tics.	Com	ment	on
		consideration	ons	and	suggest	for	temp	eratur	е	settings	for	one	type	of
		thermoplast	tic.											
	(10 marks)													
	b)	Give genera	al spe	ecifica	ations for a	ın inje	ection	mould	ding	machine	∋.			
	(5 marks)													
	c)) Moulding te	empe	rature	for polyst	yrene	e in an	inject	ion	moulding	g pro	cess i	s 177-:	260
°C. Suggest temperature settings at the following zones: feed, middle, forward,									ard,					
		nozzle and	mou	ld in °	C.									
										(5	mark	s)		
				_					_ Er	nd of Qu	estior	1		
									_					

Answers to Question 4