มหาวิทยาลัยสงขลานครินทร์ คณะวิศวกรรมศาสตร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1 วันที่ 11 ตุลาคม 2549

ประจำปีการศึกษา 2549

เวลา 9.00-12.00 น.

วิชา 226-582 Artificial Intelligence for industry

ห้อง หัวหุ่น

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชานั้น และพักการเรียน 1 ภาคการศึกษา

Part A

- คำสั่ง 1. ข้อสอบมีทั้งหมด 3 ข้อ คะแนนเต็ม 60 คะแนน ให้ทำทุกข้อ
 - 2. อนุญาตให้นำใน๊ต ตำรา เข้าห้องสอบได้
 - 3. ข้อสอบ Part A ให้ทำในสมุดคำตอบสีเหลือง ส่วน Part B ให้ทำในสมุดคำตอบสีฟ้า
 - 1. สมมติให้ set ของสัจจพจน์เป็นดังนี้

Steve only likes easy courses.

Science courses are hard.

All the courses in the basketweaving department are easy.

BK303 is the basketweaving course.

- a. จงแทนข้อเท็จจริงเหล่านี้ให้อยู่ในรูป predicate logic ในลักษณะ well form formula
- b. จาก well form formula ในข้อ a จงแปลงให้อยู่ในรูปของ clause (อนุประโยค)
- c. จงใช้วิธีresolution refutation เพื่อตอบคำถาม "What course would Steve like ?" (20 คะแนน)
- 2. สมมติท่านพบผู้ชำนาญการเกี่ยวกับการทำเฟอร์นิเจอร์ตกแต่งบ้าน และต้องการให้ท่านเป็นผู้ สร้างระบบชำนาญการเกี่ยวกับการทำเฟอร์นิเจอร์ ท่านมีขั้นตอนการทำงานและออกแบบ ระบบชำนาญการดังกล่าวนี้อย่างไรบ้าง จงอธิบาย

(15 คะแนน)

Som

```
3. 3.1 จงเดิมผลลัพธ์ของการหาค่านิพจน์ต่อไปนี้
(setq x (+ 7 3))
-->
(setq term (list /* (min (max 2 4 3) (* 5 3) (min (- 3 2) (+ 1 5))) (* (- 6 4) x)))
-->
(setq terms (append (list term) /(8)))
-->
(append /(+) /((/ 4 (* 3 5))) terms)
-->
3.2 จงเขียนโปรแกรมด้วยภาษา Lisp เพื่อสร้าง function y³(x+1)²+x³(y+1)² เมื่อ กำหนดให้ +, -, *, / เป็น primitive function ของภาษา Lisp
3.3 จงเดิมผลลัพธ์ของการหาค่านิพจน์ต่อไปนี้
(car (cdr (cons (car (cons 1 (cdr /(2 1 3) ) ) ) (cons (car /(7 1 5) ) /(3 2) ) ) ) )
-->
(25 คะแนน)
```

ฉ. นิตยา ซีการ์
 ผู้ออกข้อสอบ

Part B: Neural Networks

Question #	Full Score	Assigned Score
1	20	
2	30	
Total Score	50	

Answer the following questions in the book provided

Question #1 (20 marks)

- 1.1 What are the Transfer functions? List and draw its graph for at least 3 types of the Transfer function applied for neural networks.
- 1.2 Summarize what you have learned from the assignment you were assigned in the class. (solve the problem by using neural networks)

Hint: Identify your problem, analyze for the input and output variables, prepare the data, design the network model, train and test the network.

Question #2 (30 marks)

Consider a two-layer perceptron (an input, a hidden, and an output layer). There are two input units, three hidden units, and one output unit. Name them I_I , I_2 , H_I , H_2 , H_3 , and O_I , respectively. Let W_{Hi} and W_{OI} denote the input weight vectors of H_i and O_I , respectively. Define the matrix $W_H = [W_{H1}^T W_{H2}^T W_{H3}^T]$ and the matrix $W_O = W_{OI}^T$ where the superscript T means "transpose". Let $\theta_H = [\theta_{H1} \theta_{H2} \theta_{H3}]$ and $\theta_O = [\theta_{OI}]$ where θ_{Hi} and θ_{Oi} are the thresholds for the hidden unit and the output unit, respectively. Let I,H, and O be the input, the hidden and the output vectors of activation levels. Then, we have

$$H = F_h(IW_H - \theta_H)$$

and

$$O = F_h(HW_O - \theta_O)$$

where F_h is a hard-limiting function. Assume the thresholds of all the hidden and the output units are zero. Also assume

$$W_{H1} = [-2,2] W_{H2} = [2,2] W_{H3} = [1,3] W_O = [1,2,1]$$

You are given two classes of patterns as follows:

$$(7,5)$$
, $(6,3)$, $(2,4) \in \text{Class A}$
 $(6,0)$, $(-1,-2)$, $(3,-3) \in \text{Class B}$

Sapap

- 2.1 Will this machine separate these patterns? (Hint: Calculate the output for each pattern, and then see whether one class of patterns output 1 and the other class 0)
 - 2.2 Discuss the linear separability of these patterns.

Assoc. Prof. Somchai Chuchom